scholarly journals Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO

Author(s):  
M. G. Aartsen ◽  
◽  
M. Ackermann ◽  
J. Adams ◽  
J. A. Aguilar ◽  
...  

AbstractAdopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 $$\hbox {C}_3\hbox {F}_8$$ C 3 F 8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain $$\sigma _{\mathrm{SD}} \lesssim 3 \times 10^{-39} \mathrm {cm}^2$$ σ SD ≲ 3 × 10 - 39 cm 2 ($$6 \times 10^{-38} \mathrm {cm}^2$$ 6 × 10 - 38 cm 2 ) at $$\gtrsim 90\%$$ ≳ 90 % C.L. for a DM particle of mass 1 TeV annihilating into $$\tau ^+ \tau ^-$$ τ + τ - ($$b\bar{b}$$ b b ¯ ) with a local density of $$\rho _{\mathrm{DM}} = 0.3~\mathrm {GeV/cm}^3$$ ρ DM = 0.3 GeV / cm 3 . The constraints scale inversely with $$\rho _{\mathrm{DM}}$$ ρ DM and are independent of the DM velocity distribution.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jinmian Li ◽  
Junle Pei ◽  
Cong Zhang

Abstract This work studies the self-interacting dark matter (SIDM) scenario in the general NMSSM and beyond, where the dark matter is a Majorana fermion and the force mediator is a scalar boson. An improved analytical expression for the dark matter (DM) self-interacting cross section which takes into account the Born level effects is proposed. Due to the large couplings and light mediator in SIDM scenario, the DM/mediator will go through multiple branchings if they are produced with high energy. Based on the Monte Carlo simulation of the showers in the DM sector, we obtain the multiplicities and the spectra of the DM/mediator from the Higgsino production and decay at the LHC for our benchmark points.


1991 ◽  
Vol 44 (8) ◽  
pp. 2220-2240 ◽  
Author(s):  
N. Sato ◽  
K. S. Hirata ◽  
T. Kajita ◽  
T. Kifune ◽  
K. Kihara ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Vitaly Beylin ◽  
Maxim Bezuglov ◽  
Vladimir Kuksa ◽  
Egor Tretiakov

The interaction of high-energy leptons with components of Dark Matter in a hypercolor model is considered. The possibility of detection, using IceCube secondary neutrinos produced by quasielastic scattering of cosmic ray electrons off hidden mass particles, is investigated. The dominant contribution to the cross section results from diagrams with scalar exchanges. A strong dependence of the total cross section on the Dark Matter components mass is also found.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3741-3747
Author(s):  
ABHIJIT BANDYOPADHYAY ◽  
SOVAN CHAKRABORTY ◽  
DEBASISH MAJUMDAR

We consider the recent limits on dark matter–nucleon elastic scattering cross-section from the analysis of CDMS II collaboration using the two signal events observed in CDMS experiment. With these limits we try to interpret the super-Kamiokande (SK) bounds on the detection rates of up-going muons induced by the neutrinos that are produced in the sun from the decay of annihilation products of dark matter (WIMP's) captured in the solar core. Calculated rates of up-going muons for different annihilation channels at SK using CDMS bounds are found to be orders below the predicted upper limits of such up-going muon rates at SK. Thus there exists room for enhancement (boost) of the calculated rates using CDMS limits for interpreting SK bounds. Such a feature is expected to represent the PAMELA data with the current CDMS limits. We also show the dependence of such a possible enhancement factor (boost) on WIMP mass for different WIMP annihilation channels.


1977 ◽  
Vol 45 ◽  
pp. 293-296 ◽  
Author(s):  
J. Palouš

The basic model of our Galaxy, like the Schmidt (1965) model, obeys the density law ρ(R) for the Galaxy based on divers evidence, less or better known from observation. The interpretation of the interstellar hydrogen radio profiles yields the rotation curve and the run of the force component in the radial direction. The Oort constants A, B known from radial velocities and proper motions of nearby stars, the distance from the Sun to the galactic center Roestablished from the distances of RR Lyrae stars, the local density and density gradients in the vicinity of the Sun, known from the star counts, are involved in this basic model of the Galaxy. The r.m.s. velocity component in the z direction yields the approximate mass distribution in this direction. The model surface density is computed by integrating the density along the z direction in the model. The local surface density in the Schmidt model is 114 solar masses per pc2; it depends rather strongly on the assumed density variation in the outer part of the Galaxy.


Author(s):  
А. Н. Нарожный ◽  
Д. М. Шлифер

Some consequences from the hypothesis of the origin of particles of one of the components of dark matter are presented. The reason for the hypothesis was the observational data of stellar radiation, considered through the prism of the relationship of all phenomena in Nature and the law of conservation of energy. It is argued that a part of the stellar electromagnetic radiation, which does not participate in the interaction with baryonic matter, will not wander forever in space. This radiation will interact with a subtle level of matter, continuously giving it its energy, shifting to the microwave region. In this frequency region, two quanta of close energies can form a neutral boson of spin 0, or spin 2, on opposite “courses”. Based on the observed spectrum of cosmic microwave radiation, it is assumed that these Bose particles have a continuous mass spectrum. These light nonrelativistic bosons are precisely the component of the thin medium that interacts with stellar radiation, taking energy from it. Bose particles participate in gravitational interactions. This means that in addition to the distribution of dark matter around galaxies, an increased concentration of particles in the form of large clouds can be observed in it. If an internal shock wave appears in such a cloud, located far from galactic streams of baryon particles, it will destroy the particles of the cloud, creating “strange radio circles” visible exclusively in the radio range. The gravitational interaction causes dark particles to drift towards large clusters of visible matter. The process of their drift to massive objects will be accompanied by resistance from the outgoing stellar radiation. Therefore, near the surface of a burning star, these particles themselves will resist the outgoing radiation, shifting it towards longer wavelengths. The plasma ejected by the star, with sufficient energy of its particles, is capable of destroying the particles of the dark component, creating pairs of photons and providing itself with "seed" quanta for bremsstrahlung. Free quanta remaining from the decay of dark particles will give microwave radiation. Therefore, burning stars should exhibit a redshift in the emission spectra and microwave radiation. Taking a certain model in the distribution of the dark component of matter near the Sun, it is possible to predict the nature of the redshift in the spectra of its radiation as the observation point moves along the solar disk from its center to the limb. A similar conclusion is made regarding the intensity of microwave radiation near the surface of the star. The galactic movement of the Sun should lead to some temperature effects associated with a denser counter flow of dark particles to the corresponding area of the solar surface. Knowing the direction of motion of the Sun in the Galaxy, based on the results of the temperature deviation on the surface of the star, one can determine the local speed and direction of movement of the cloud of the dark component of matter.


1984 ◽  
Vol 81 ◽  
pp. 326-329
Author(s):  
David Gilden ◽  
John N. Bahcall

AbstractAn ensemble of orbits passing through the solar position have been generated for a specific mass model of the galaxy. These orbits are randomly sampled to form simulated density distributions of tracer stars perpendicular to the galactic disk. The simulated distributions are analyzed in order to determine the sampling errors in a self-consistent derivation of the total amount of matter near the sun (the Oort limit).


2019 ◽  
Vol 492 (4) ◽  
pp. 5780-5793 ◽  
Author(s):  
Jack Richings ◽  
Carlos Frenk ◽  
Adrian Jenkins ◽  
Andrew Robertson ◽  
Azadeh Fattahi ◽  
...  

ABSTRACT N-body simulations make unambiguous predictions for the abundance of substructures within dark matter haloes. However, the inclusion of baryons in the simulations changes the picture because processes associated with the presence of a large galaxy in the halo can destroy subhaloes and substantially alter the mass function and velocity distribution of subhaloes. We compare the effect of galaxy formation on subhalo populations in two state-of-the-art sets of hydrodynamical Λcold dark matter (ΛCDM) simulations of Milky Way mass haloes, Apostle and Auriga. We introduce a new method for tracking the orbits of subhaloes between simulation snapshots that gives accurate results down to a few kiloparsecs from the centre of the halo. Relative to a dark matter-only simulation, the abundance of subhaloes in Apostle is reduced by 50 per cent near the centre and by 10 per cent within r200. In Auriga, the corresponding numbers are 80 per cent and 40 per cent. The velocity distributions of subhaloes are also affected by the presence of the galaxy, much more so in Auriga than in Apostle. The differences on subhalo properties in the two simulations can be traced back to the mass of the central galaxies, which in Auriga are typically twice as massive as those in Apostle. We show that some of the results from previous studies are inaccurate due to systematic errors in the modelling of subhalo orbits near the centre of haloes.


2011 ◽  
Vol 20 (01) ◽  
pp. 17-22 ◽  
Author(s):  
I. B. KHRIPLOVICH

We consider the capture of galactic dark matter by the solar system, due to the gravitational three-body interaction of the Sun, a planet, and a dark matter particle. Simple estimates are presented for the capture cross-section, as well as for the density and velocity distributions of captured dark matter particles close to the Earth.


Sign in / Sign up

Export Citation Format

Share Document