Static wormhole solutions and Noether symmetry in modified Gauss–Bonnet gravity
Abstract In this paper, we analyze static traversable wormholes via Noether symmetry technique in modified Gauss–Bonnet $$f(\mathcal {G})$$f(G) theory of gravity (where $$\mathcal {G}$$G represents Gauss–Bonnet term). We assume isotropic matter configuration and spherically symmetric metric. We construct three $$f(\mathcal {G})$$f(G) models, i.e, linear, quadratic and exponential forms and examine the consistency of these models. The traversable nature of wormhole solutions is discussed via null energy bound of the effective stress–energy tensor while physical behavior is studied through standard energy bounds of isotropic fluid. We also discuss the stability of these wormholes inside the wormhole throat and conclude the presence of traversable and physically stable wormholes for quadratic as well as exponential $$f(\mathcal {G})$$f(G) models.