Automatic High-Speed Compressive Tracking with Motion Prediction

Author(s):  
Hongjun Li ◽  
Wei Hu
Author(s):  
Shuxiang Guo ◽  
Liwei Shi

Given the special working environments and application functions of the amphibious robot, an improved RGB-D visual tracking algorithm with dual trackers is proposed and implemented in this chapter. Compressive tracking (CT) was selected as the basis of the proposed algorithm to process colour images from a RGB-D camera, and a Kalman filter with a second-order motion model was added to the CT tracker to predict the state of the target, select candidate patches or samples, and reinforce the tracker's robustness to high-speed moving targets. In addition, a variance ratio features shift (VR-V) tracker with a Kalman prediction mechanism was adopted to process depth images from a RGB-D camera. A visible and infrared fusion mechanism or feedback strategy is introduced in the proposed algorithm to enhance its adaptability and robustness. To evaluate the effectiveness of the algorithm, Microsoft Kinect, which is a combination of colour and depth cameras, was adopted for use in a prototype of the robotic tracking system.


2018 ◽  
Vol 25 (s2) ◽  
pp. 56-61 ◽  
Author(s):  
Kaiye Hu ◽  
Yong Ding ◽  
Hongwei Wang

Abstract This paper mainly studies the longitudinal motion prediction method and control technology of high-speed catamaran using the active hydrofoils. To establish the longitudinal motion equations of the ship basing on the 2.5D theory. Using the CFD software to obtain the hydrodynamic data of the hydrofoil. Bring the hydrodynamic expression of hydrofoils into the longitudinal motion equations of the ship. Predicting the longitudinal motion of High-speed catamaran before and after added the hydrofoils. A specific catamaran has been predicted with this approach, the result indicates this approach is workable and this prediction approach provides the theoretical basis for assessing the stabilization ability of appendages and possess the engineering practical value.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Sign in / Sign up

Export Citation Format

Share Document