DENSE ORBITS FOR ABELIAN SUBGROUPS OF GL(n, ℂ)

Author(s):  
ADLENE AYADI ◽  
HABIB MARZOUGUI
2017 ◽  
Vol 28 (10) ◽  
pp. 1750073 ◽  
Author(s):  
Thierry Giordano ◽  
Daniel Gonçalves ◽  
Charles Starling

Let [Formula: see text] and [Formula: see text] be open subsets of the Cantor set with nonempty disjoint complements, and let [Formula: see text] be a homeomorphism with dense orbits. Building on the ideas of Herman, Putnam and Skau, we show that the partial action induced by [Formula: see text] can be realized as the Vershik map on an ordered Bratteli diagram, and that any two such diagrams are equivalent.


2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


Author(s):  
P. R. Jones

SynopsisThe class CS of completely simple semigroups forms a variety under the operations of multiplication and inversion (x−1 being the inverse of x in its ℋ-class). We determine a Rees matrix representation of the CS-free product of an arbitrary family of completely simple semigroups and deduce a description of the free completely simple semigroups, whose existence was proved by McAlister in 1968 and whose structure was first given by Clifford in 1979. From this a description of the lattice of varieties of completely simple semigroups is given in terms of certain subgroups of a free group of countable rank. Whilst not providing a “list” of identities on completely simple semigroups it does enable us to deduce, for instance, the description of all varieties of completely simple semigroups with abelian subgroups given by Rasin in 1979. It also enables us to describe the maximal subgroups of the “free” idempotent-generated completely simple semigroups T(α, β) denned by Eberhart et al. in 1973 and to show in general the maximal subgroups of the “V-free” semigroups of this type (which we define) need not be free in any variety of groups.


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


Sign in / Sign up

Export Citation Format

Share Document