dense orbits
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 103 (3) ◽  
pp. 25-35
Author(s):  
H.M. Hasan ◽  
◽  
D.F. Ahmed ◽  
M.F. Hama ◽  
K.H.F. Jwamer ◽  
...  

In our work we have defined an operator called subspace convex-cyclic operator. The property of this newly defined operator relates eigenvalues which have eigenvectors of modulus one with kernels of the operator. We have also illustrated the effect of the subspace convex-cyclic operator when we let it function in linear dynamics and joining it with functional analysis. The work is done on infinite dimensional spaces which may make linear operators have dense orbits. Its property of measure preserving puts together probability space with measurable dynamics and widens the subject to ergodic theory. We have also applied Birkhoff’s Ergodic Theorem to give a modified version of subspace convex-cyclic operator. To work on a separable infinite Hilbert space, it is important to have Gaussian invariant measure from which we use eigenvectors of modulus one to get what we need to have. One of the important results that we have got from this paper is the study of Central Limit Theorem. We have shown that providing Gaussian measure, Central Limit Theorem holds under the certain conditions that are given to the defined operator. In general our work is theoretically new and is combining three basic concepts dynamical system, operator theory and ergodic theory under the measure and statistics theory.


Author(s):  
Corina Ciobotaru ◽  
Vladimir Finkelshtein ◽  
Cagri Sert

AbstractLet G be a large group acting on a biregular tree T and $$\Gamma \le G$$ Γ ≤ G a geometrically finite lattice. In an earlier work, the authors classified orbit closures of the action of the horospherical subgroups on $$G/\Gamma $$ G / Γ . In this article we show that there is no escape of mass and use this to prove that, in fact, dense orbits equidistribute to the Haar measure on $$G/\Gamma $$ G / Γ . On the other hand, we show that new dynamical phenomena for horospherical actions appear on quotients by non-geometrically finite lattices: we give examples of non-geometrically finite lattices where an escape of mass phenomenon occurs and where the orbital averages along a Følner sequence do not converge. In the last part, as a by-product of our methods, we show that projections to $$\Gamma \backslash T$$ Γ \ T of the uniform distributions on large spheres in the tree T converge to a natural probability measure on $$\Gamma \backslash T$$ Γ \ T . Finally, we apply this equidistribution result to a lattice point counting problem to obtain counting asymptotics with exponential error term.


Author(s):  
Ziv Hellman ◽  
Yehuda John Levy

We study dynamic properties of the group action on the simplex that is induced by Bayesian updating. We show that, generically, the orbits are dense in the simplex, although one must make use of the entire group, hence departing from straightforward Bayesian updating. We demonstrate also the necessity of the genericity of the signalling structure, a relationship to descriptive set theoretical concepts, and applications thereof to repeated games of incomplete information, as well a strengthening concerning the group action on itself.


2021 ◽  
pp. 1-46
Author(s):  
JINPENG AN ◽  
LIFAN GUAN ◽  
DMITRY KLEINBOCK

Abstract Let G be a Lie group, let $\Gamma \subset G$ be a discrete subgroup, let $X=G/\Gamma $ and let f be an affine map from X to itself. We give conditions on a submanifold Z of X that guarantee that the set of points $x\in X$ with f-trajectories avoiding Z is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on X. This has applications in constructing exceptional geodesics on locally symmetric spaces and in non-density of the set of values of certain functions at integer points.


2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


2019 ◽  
Vol 476 (2) ◽  
pp. 539-548 ◽  
Author(s):  
Abhay Kumar ◽  
Sachi Srivastava
Keyword(s):  

2019 ◽  
Vol 6 (1) ◽  
pp. 58-63
Author(s):  
Neema Wilberth ◽  
Marco Mpimbo ◽  
Santosh Kumar

Abstract In this paper, we present the existence of n-tuple of operators on complex Hilbert space that has a somewhere dense orbit and is not dense. We give the solution to the question stated in [11]: “Is there n-tuple of operators on a complex Hilbert space that has a somewhere dense orbit that is not dense?” We do so by extending the results due to Feldman [11] and Leòn-Saavedra [12] to complex Hilbert space. Further illustrative examples of somewhere dense orbits are given to support the results.


2018 ◽  
Vol 2018 (745) ◽  
pp. 155-188 ◽  
Author(s):  
Anish Ghosh ◽  
Alexander Gorodnik ◽  
Amos Nevo

Abstract This paper establishes upper and lower bounds on the speed of approximation in a wide range of natural Diophantine approximation problems. The upper and lower bounds coincide in many cases, giving rise to optimal results in Diophantine approximation which were inaccessible previously. Our approach proceeds by establishing, more generally, upper and lower bounds for the rate of distribution of dense orbits of a lattice subgroup Γ in a connected Lie (or algebraic) group G, acting on suitable homogeneous spaces G/H. The upper bound is derived using a quantitative duality principle for homogeneous spaces, reducing it to a rate of convergence in the mean ergodic theorem for a family of averaging operators supported on H and acting on G/Γ. In particular, the quality of the upper bound on the rate of distribution we obtain is determined explicitly by the spectrum of H in the automorphic representation on L^{2} (Γ \setminus G). We show that the rate is best possible when the representation in question is tempered, and show that the latter condition holds in a wide range of examples.


Sign in / Sign up

Export Citation Format

Share Document