scholarly journals SYMMETRIES AND INVARIANTS OF TWISTED QUANTUM ALGEBRAS AND ASSOCIATED POISSON ALGEBRAS

2008 ◽  
Vol 20 (02) ◽  
pp. 173-198 ◽  
Author(s):  
A. I. MOLEV ◽  
E. RAGOUCY

We construct an action of the braid group BN on the twisted quantized enveloping algebra [Formula: see text] where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra [Formula: see text]. We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.

2003 ◽  
Vol 15 (08) ◽  
pp. 789-822 ◽  
Author(s):  
A. I. MOLEV ◽  
E. RAGOUCY ◽  
P. SORBA

We introduce two subalgebras in the type A quantum affine algebra which are coideals with respect to the Hopf algebra structure. In the classical limit q→1 each subalgebra specializes to the enveloping algebra [Formula: see text], where [Formula: see text] is a fixed point subalgebra of the loop algebra [Formula: see text] with respect to a natural involution corresponding to the embedding of the orthogonal or symplectic Lie algebra into [Formula: see text]. We also give an equivalent presentation of these coideal subalgebras in terms of generators and defining relations which have the form of reflection-type equations. We provide evaluation homomorphisms from these algebras to the twisted quantized enveloping algebras introduced earlier by Gavrilik and Klimyk and by Noumi. We also construct an analog of the quantum determinant for each of the algebras and show that its coefficients belong to the center of the algebra. Their images under the evaluation homomorphism provide a family of central elements of the corresponding twisted quantized enveloping algebra.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850190 ◽  
Author(s):  
Viktor Abramov

We propose an extension of [Formula: see text]-ary Nambu–Poisson bracket to superspace [Formula: see text] and construct by means of superdeterminant a family of Nambu–Poisson algebras of even degree functions, where the parameter of this family is an invertible transformation of Grassmann coordinates in superspace [Formula: see text]. We prove in the case of the superspaces [Formula: see text] and [Formula: see text] that our [Formula: see text]-ary bracket, defined with the help of superdeterminant, satisfies the conditions for [Formula: see text]-ary Nambu–Poisson bracket, i.e. it is totally skew-symmetric and it satisfies the Leibniz rule and the Filippov–Jacobi identity (fundamental identity). We study the structure of [Formula: see text]-ary bracket defined with the help of superdeterminant in the case of superspace [Formula: see text] and show that it is the sum of usual [Formula: see text]-ary Nambu–Poisson bracket and a new [Formula: see text]-ary bracket, which we call [Formula: see text]-bracket, where [Formula: see text] is the product of two odd degree smooth functions.


1998 ◽  
Vol 41 (3) ◽  
pp. 611-623
Author(s):  
R. J. Marsh

Let U be the quantized enveloping algebra associated to a simple Lie algebra g by Drinfel'd and Jimbo. Let λ be a classical fundamental weight for g, and ⋯(λ) the irreducible, finite-dimensional type 1 highest weight U-module with highest weight λ. We show that the canonical basis for ⋯(λ) (see Kashiwara [6, §0] and Lusztig [18, 14.4.12]) and the standard monomial basis (see [11, §§2.4 and 2.5]) for ⋯(λ) coincide.


2014 ◽  
Vol 214 ◽  
pp. 1-52
Author(s):  
Toshiyuki Tanisaki

AbstractWe formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twistedD-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.


Sign in / Sign up

Export Citation Format

Share Document