A LOGARITHMALLY IMPROVED BLOW-UP CRITERION OF SMOOTH SOLUTIONS FOR THE THREE-DIMENSIONAL MHD EQUATIONS

2012 ◽  
Vol 23 (02) ◽  
pp. 1250027 ◽  
Author(s):  
YU-ZHU WANG ◽  
HENGJUN ZHAO ◽  
YIN-XIA WANG

In this paper we investigate the Cauchy problem for the three-dimensional incompressible magnetohydrodynamic equations. A logarithmal improved blow-up criterion of smooth solutions is obtained.

2012 ◽  
Vol 22 (02) ◽  
pp. 1150010 ◽  
Author(s):  
XINYING XU ◽  
JIANWEN ZHANG

This paper is concerned with a blow-up criterion of strong solutions for three-dimensional compressible isentropic magnetohydrodynamic equations with vacuum. It is shown that if the density and velocity satisfy [Formula: see text], where [Formula: see text], 3 < r ≤ ∞ and [Formula: see text] denotes the weak Lr-space, then the strong solutions to the Cauchy problem of the compressible magnetohydrodynamic equations can exist globally over [0, T].


2019 ◽  
Vol 16 (04) ◽  
pp. 639-661 ◽  
Author(s):  
Zhen Wang ◽  
Xinglong Wu

We establish a well-posedness theory and a blow-up criterion for the Chaplygin gas equations in [Formula: see text] for any dimension [Formula: see text]. First, given [Formula: see text], [Formula: see text], we prove the well-posedness property for solutions [Formula: see text] in the space [Formula: see text] for the Cauchy problem associated with the Chaplygin gas equations, provided the initial density [Formula: see text] is bounded below. We also prove that the solution of the Chaplygin gas equations depends continuously upon its initial data [Formula: see text] in [Formula: see text] if [Formula: see text], and we state a blow-up criterion for the solutions in the classical BMO space. Finally, using Osgood’s modulus of continuity, we establish a refined blow-up criterion of the solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Zhaohui Dai ◽  
Xiaosong Wang ◽  
Lingrui Zhang ◽  
Wei Hou

The Boussinesq equations describe the three-dimensional incompressible fluid moving under the gravity and the earth rotation which come from atmospheric or oceanographic turbulence where rotation and stratification play an important role. In this paper, we investigate the Cauchy problem of the three-dimensional incompressible Boussinesq equations. By commutator estimate, some interpolation inequality, and embedding theorem, we establish a blow-up criterion of weak solutions in terms of the pressurepin the homogeneous Besov spaceḂ∞,∞0.


2020 ◽  
Vol 17 (03) ◽  
pp. 501-557
Author(s):  
Hao Li ◽  
Yachun Li

We consider the Cauchy problem for the three-dimensional, compressible radiation hydrodynamic equations. We establish the existence and uniqueness of local strong solutions for large initial data satisfying some compatibility condition. The initial density need not be positive and may vanish in an open set. Moreover, we establish a Serrin-type blow-up criterion, which is stated in terms of the velocity and density variables [Formula: see text] and is independent of the temperature and the radiation intensity.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
TianLi LI ◽  
Wen Wang ◽  
Lei Liu

Regularity criteria of the weak solutions to the three-dimensional (3D) incompressible magnetohydrodynamic (MHD) equations are discussed. Our results imply that the scalar pressure field π plays an important role in the regularity problem of MHD equations. We derive that the weak solution u , b is regular on 0 , T , which is provided for the scalar pressure field π in the Besov spaces.


Sign in / Sign up

Export Citation Format

Share Document