A Torelli theorem for moduli spaces of principal bundles on curves defined over ℝ

2017 ◽  
Vol 28 (06) ◽  
pp. 1750049
Author(s):  
Indranil Biswas ◽  
Olivier Serman

Let [Formula: see text] be a geometrically irreducible smooth projective curve, of genus at least three, defined over the field of real numbers. Let [Formula: see text] be a connected reductive affine algebraic group, defined over [Formula: see text], such that [Formula: see text] is nonabelian and has one simple factor. We prove that the isomorphism class of the moduli space of principal [Formula: see text]-bundles on [Formula: see text] determine uniquely the isomorphism class of [Formula: see text].

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


2009 ◽  
Vol 148 (3) ◽  
pp. 409-423 ◽  
Author(s):  
I. BISWAS ◽  
T. GÓMEZ ◽  
V. MUÑOZ

AbstractLet X be an irreducible smooth complex projective curve of genus g ≥ 2, and let x ∈ X be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, φ), where E is coherent sheaf on X of rank r and fixed determinant ξ, and φ: Ex → r is a non–zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter τ > 0, which gives rise to the moduli space of τ–semistable framed bundles τ. We prove a Torelli theorem for τ, for τ > 0 small enough, meaning, the isomorphism class of the one–pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety τ.


Author(s):  
Indranil Biswas ◽  
Francesco Bottacin ◽  
Tomás L. Gómez

AbstractLet X be a complex irreducible smooth projective curve, and let $${{\mathbb {L}}}$$ L be an algebraic line bundle on X with a nonzero section $$\sigma _0$$ σ 0 . Let $${\mathcal {M}}$$ M denote the moduli space of stable Hitchin pairs $$(E,\, \theta )$$ ( E , θ ) , where E is an algebraic vector bundle on X of fixed rank r and degree $$\delta $$ δ , and $$\theta \, \in \, H^0(X,\, {\mathcal {E}nd}(E)\otimes K_X\otimes {{\mathbb {L}}})$$ θ ∈ H 0 ( X , E n d ( E ) ⊗ K X ⊗ L ) . Associating to every stable Hitchin pair its spectral data, an isomorphism of $${\mathcal {M}}$$ M with a moduli space $${\mathcal {P}}$$ P of stable sheaves of pure dimension one on the total space of $$K_X\otimes {{\mathbb {L}}}$$ K X ⊗ L is obtained. Both the moduli spaces $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M are equipped with algebraic Poisson structures, which are constructed using $$\sigma _0$$ σ 0 . Here we prove that the above isomorphism between $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M preserves the Poisson structures.


Author(s):  
Oscar García-Prada ◽  
S. Ramanan

This chapter considers the moduli space of rank 2 Higgs bundles with fixed determinant over a smooth projective curve X of genus 2 over ℂ, and studies involutions defined by tensoring the vector bundle with an element α‎ of order 2 in the Jacobian of the curve, combined with multiplication of the Higgs field by ±1. It describes the fixed points of these involutions in terms of the Prym variety of the covering of X defined by α‎, and gives an interpretation in terms of the moduli space of representations of the fundamental group.


2018 ◽  
Vol 5 (1) ◽  
pp. 146-149
Author(s):  
Sujoy Chakraborty ◽  
Arjun Paul

Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of


2010 ◽  
Vol 21 (11) ◽  
pp. 1505-1529 ◽  
Author(s):  
VICENTE MUÑOZ

Let X be a smooth projective curve of genus g ≥ 2 over ℂ. Fix n ≥ 2, d ∈ ℤ. A pair (E, ϕ) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section ϕ ∈ H0(E). There is a concept of stability for pairs which depends on a real parameter τ. Let [Formula: see text] be the moduli space of τ-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of [Formula: see text] are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H1(X). This implies a similar result for the moduli spaces of stable vector bundles over X.


2009 ◽  
Vol 11 (01) ◽  
pp. 1-26
Author(s):  
INDRANIL BISWAS ◽  
VICENTE MUÑOZ

Let X be any compact connected Riemann surface of genus g, with g ≥ 3. For any r ≥ 2, let [Formula: see text] denote the moduli space of holomorphic SL (r,ℂ)-connections over X. It is known that the biholomorphism class of the complex variety [Formula: see text] is independent of the complex structure of X. If g = 3, then we assume that r ≥ 3. We prove that the isomorphism class of the variety [Formula: see text] determines the Riemann surface X uniquely up to an isomorphism. A similar result is proved for the moduli space of holomorphic GL (r,ℂ)-connections on X. We also show that the Torelli theorem remains valid for the moduli spaces of connections, as well as those of stable vector bundles, on geometrically irreducible smooth projective curves defined over the field of real numbers.


2018 ◽  
Vol 167 (01) ◽  
pp. 61-64 ◽  
Author(s):  
INDER KAUR

AbstractLet K be a field of characteristic 0. Fix integers r, d coprime with r ⩾ 2. Let XK be a smooth, projective, geometrically connected curve of genus g ⩾ 2 defined over K. Assume there exists a line bundle ${\cal L}_K$ on XK of degree d. In this paper we prove the existence of a stable locally free sheaf on XK with rank r and determinant ${\cal L}_K$. This trivially proves the C1 conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.


2009 ◽  
Vol 20 (08) ◽  
pp. 1029-1055 ◽  
Author(s):  
D. HERNÁNDEZ-SERRANO ◽  
J. M. MUÑOZ PORRAS ◽  
F. J. PLAZA MARTÍN

In this paper the moduli space of Higgs pairs over a fixed smooth projective curve with extra formal data is defined and is endowed with a scheme structure. We introduce a relative version of the Krichever map using a fibration of Sato Grassmannians and show that this map is injective. This, together with the characterization of the points of the image of the Krichever map, allows us to prove that this moduli space is a closed subscheme of the product of the moduli of vector bundles (with formal extra data) and a formal anologue of the Hitchin base. This characterization also provides us with a method for explicitly computing KP-type equations that describe the moduli space of Higgs pairs. Finally, for the case where the spectral cover is totally ramified at a fixed point of the curve, these equations are given in terms of the characteristic coefficients of the Higgs field.


Sign in / Sign up

Export Citation Format

Share Document