CHERN–SIMONS TERMS AND ANOMALIES IN GAUGE THEORIES

1991 ◽  
Vol 06 (21) ◽  
pp. 1915-1921 ◽  
Author(s):  
R. BANERJEE

The parity-violating effective action for theories of fermions coupled to external gauge fields in arbitrary odd dimensions is calculated exactly by a perturbative technique. This effective action is used to obtain the structures for the Chern–Simons terms in odd dimensions and anomalies in even dimensions. Our analysis clearly elucidates the connection of the Chern–Simons terms with the covariant and consistent anomalies.

2000 ◽  
Vol 15 (18) ◽  
pp. 1203-1212 ◽  
Author(s):  
HITOSHI IKEMORI ◽  
SHINSAKU KITAKADO ◽  
HIDEHARU OTSU ◽  
TOSHIRO SATO

Quantum mechanics on sphere Sn is studied from the viewpoint that the Berry's connection has to appear as a topological term in the effective action. Furthermore we show that this term is the Chern–Simons term of gauge variables that correspond to the extra degrees of freedom of the enlarged space.


1986 ◽  
Vol 01 (01) ◽  
pp. 23-27 ◽  
Author(s):  
YIE-LIANG WU ◽  
YAN-BO XIE ◽  
GUANG-ZHAO ZHOU

The nonlinear sigma model describes Goldstone bosons originating from spontaneous symmetry breaking. A set of local counterterms is found to shift the anomaly of the nonlinear sigma model to that of the original model with fermions interacting with external gauge fields. The ‘t Hooft consistency conditions are matched automatically.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Enore Guadagnini ◽  
Vittoria Urso

AbstractWe consider the perturbative renormalization of the Schwinger–Dyson functional, which is the generating functional of the expectation values of the products of the composite operator given by the field derivative of the action. It is argued that this functional plays an important role in the topological Chern–Simons and BF quantum field theories. It is shown that, by means of the renormalized perturbation theory, a canonical renormalization procedure for the Schwinger–Dyson functional is obtained. The combinatoric structure of the Feynman diagrams is illustrated in the case of scalar models. For the Chern–Simons and the BF gauge theories, the relationship between the renormalized Schwinger–Dyson functional and the generating functional of the correlation functions of the gauge fields is produced.


2001 ◽  
Vol 16 (23) ◽  
pp. 3867-3895 ◽  
Author(s):  
NOBORU KAWAMOTO ◽  
HIROSHI UMETSU ◽  
TAKUYA TSUKIOKA

We extend the previously proposed generalized gauge theory formulation of the Chern–Simons type and topological Yang–Mills type actions into Yang–Mills type actions. We formulate gauge fields and Dirac–Kähler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one-form gauge fields accommodated with the graded Lie algebra of SU (2|1) supergroup leads the Weinberg–Salam model. Thus the Weinberg–Salam model formulated by noncommutative geometry is a particular example of the present formulation.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Diego Hofman ◽  
Nabil Iqbal

We study the holographic duals of four-dimensional field theories with 1-form global symmetries, both discrete and continuous. Such higher-form global symmetries are associated with antisymmetric tensor gauge fields in the bulk. Various different realizations are possible: we demonstrate that a Maxwell action for the bulk antisymmetric gauge field results in a non-conformal field theory with a marginally running double-trace coupling. We explore its hydrodynamic behavior at finite temperature and make contact with recent symmetry-based formulations of magnetohydrodynamics. We also argue that discrete global symmetries on the boundary are dual to discrete gauge theories in the bulk. Such gauge theories have a bulk Chern-Simons description: we clarify the conventional 0-form case and work out the 1-form case. Depending on boundary conditions, such discrete symmetries may be embedded in continuous higher-form symmetries that are spontaneously broken. We study the resulting boundary Goldstone mode, which in the 1-form case may be thought of as a boundary photon. Our results clarify how the global form of the field theory gauge group is encoded in holography. Finally, we study the interplay of Maxwell and Chern-Simons terms put together. We work out the operator content and demonstrate the existence of new backreacted anisotropic scaling solutions that carry higher-form charge.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2011 ◽  
Vol 26 (26) ◽  
pp. 4647-4660
Author(s):  
GOR SARKISSIAN

In this paper we perform canonical quantization of the product of the gauged WZW models on a strip with boundary conditions specified by permutation branes. We show that the phase space of the N-fold product of the gauged WZW model G/H on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of the double Chern–Simons theory on a sphere with N holes times the time-line with G and H gauge fields both coupled to two Wilson lines. For the special case of the topological coset G/G we arrive at the conclusion that the phase space of the N-fold product of the topological coset G/G on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of Chern–Simons theory on a Riemann surface of the genus N-1 times the time-line with four Wilson lines.


Sign in / Sign up

Export Citation Format

Share Document