Quantum Bohmian description of a primordial universe with Fermionic and Bosonic sources

Author(s):  
Marlos O. Ribas ◽  
Fernando P. Devecchi ◽  
Gilberto M. Kremer

We present a model of an early universe where the sources of gravitational effects are a scalar field, a relativistic fluid based on Schutz’s model and a self-interacting fermionic field. From the classical analysis based on the Hamiltonian formalism we show that the scale factor of the universe can be expressed in terms of a conformal time that emerges from the fluid’s degrees of freedom. From the Wheeler–DeWitt equation, a wave packet solution as function of the conformal time is determined. It is shown that the combination of the scalar and the fermionic field furnishes a consistent quantum regime and a smooth transition to the classical description, working with the aid of the Bohmian mechanics and in particular with the concept of quantum potential. The influence of the presence of the scalar field is also discussed.

2017 ◽  
Vol 32 (40) ◽  
pp. 1750220 ◽  
Author(s):  
Marlos O. Ribas ◽  
Fernando P. Devecchi ◽  
Gilberto M. Kremer

In this work, a model for the pre-inflationary universe is developed where the sources of the gravitational field are a relativistic fluid and a self-interacting fermionic field. The inclusion of the relativistic fluid is based on Schutz’s model. From the classical analysis based on the Hamiltonian formalism, it is shown that the fluid degrees of freedom can be embodied by a conformal time variable and an expression for the scale factor as function of the conformal time is obtained. From the Wheeler–DeWitt equation, the expected value for the scale factor as function of the conformal time is determined. It is shown that contrary to the classical solution, the expected value of the scale factor does not have a singularity, since it is preceded by a contracted phase up to a minimum value from which the universe begins to expand. Furthermore, from the plots of the classical and quantum solutions for the scale factor as functions of the conformal time it is shown that a decoherence of the quantum solution occurs for late times and both solutions coincide.


2019 ◽  
Vol 34 (33) ◽  
pp. 1950271 ◽  
Author(s):  
Marlos O. Ribas ◽  
Fernando P. Devecchi ◽  
Gilberto M. Kremer

A model for an anisotropic pre-inflationary universe described by the Bianchi type-I metric is developed. A relativistic fluid of the Schutz formalism and a self-interacting fermionic field are considered as sources of the gravitational field. The classical analysis is based on the Hamiltonian formalism written in terms of the Misner variables and it is shown that the fluid degrees of freedom can be embodied by a conformal time variable. The three classical scale factors are obtained as functions of the conformal time. The quantum analysis follows from the de Broglie–Bohm formalism applied to the wave function which is a solution of the Wheeler–DeWitt equation and the three scale factors are also determined as functions of the conformal time. While the classical expressions for the scale factors show a singularity when the conformal time vanishes, their quantum expressions exhibit bouncing behavior. It is possible to adjust the behavior of the classical and quantum scale factors as functions of the conformal time so that they have a common isotropic behavior at late times with a dilution of the quantum effects.


Author(s):  
Pawan Joshi ◽  
Utkarsh Kumar ◽  
Sukanta Panda

Nonlocal gravity models are constructed to explain the current acceleration of the universe. These models are inspired by the infrared correction appearing in Einstein–Hilbert action. Here, we develop the Hamiltonian formalism of a nonlocal model by considering only terms to quadratic order in Riemann tensor, Ricci tensor and Ricci scalar. We show how to count degrees of freedom using Hamiltonian formalism including Ricci tensor and Ricci scalar terms. In this model, we have also worked out with a choice of a nonlocal action which has only two degrees of freedom equivalent to GR. Finally, we find the existence of additional constraints in Hamiltonian required to remove the ghosts in our full action. We also compare our results with that of obtained using Lagrangian formalism.


2019 ◽  
Vol 34 (34) ◽  
pp. 1950283 ◽  
Author(s):  
Saumya Ghosh ◽  
Sunandan Gangopadhyay ◽  
Prasanta K. Panigrahi

In this paper, we perform the Wheeler–DeWitt quantization for Bianchi type I anisotropic cosmological model in the presence of a scalar field minimally coupled to the Einstein–Hilbert gravity theory. We also consider the cosmological (perfect) fluid to construct the matter sector of the model whose dynamics plays the role of time. After obtaining the Wheeler–DeWitt equation from the Hamiltonian formalism, we then define the self-adjointness relations properly. Doing that, we proceed to get a solution for the Wheeler–DeWitt equation and construct a well-behaved wave function for the universe. The wave packet is next constructed from a superposition of the wave functions with different energy eigenvalues together with a suitable weight factor which renders the norm of the wave packet finite. It is then concluded that the Big-Bang singularity can be removed in the context of quantum cosmology.


1993 ◽  
Vol 08 (36) ◽  
pp. 3413-3427 ◽  
Author(s):  
ATUSHI ISHIKAWA ◽  
TOSHIKI ISSE

The stability of the minisuperspace model of the early universe is studied by solving the Wheeler-DeWitt equation numerically. We consider a system of Einstein gravity with a scalar field. When we solve the Wheeler-DeWitt equation, we pick up some inhomogeneous wave modes from infinite wave modes adequately: degrees of freedom of the superspace are restricted to finite. We show that the minisuperspace is stable when a scale factor (a) of the universe is a few times larger than the Planck length, while it becomes unstable when a is comparable to the Planck length.


1994 ◽  
Vol 03 (02) ◽  
pp. 485-492 ◽  
Author(s):  
E.R. CAIANIELLO ◽  
A. FEOLI ◽  
G. SCARPETTA ◽  
S. CAPOZZIELLO ◽  
R. DE RITIS

We find the Wheeler-DeWitt equation for a Friedman-Robertson-Walker metric modified according to a model with maximal acceleration and discuss the new conditions in which the wave function of the universe tunnels from the Euclidean regime to the Lorentzian one. We argue that the acceleration induces a nonminimal coupling of the scalar field with the gravitational degrees of freedom and provides a new dynamical possibility of tunneling through the quantum boundary when [Formula: see text].


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2459-2465
Author(s):  
H. P. DE OLIVEIRA ◽  
I. DAMIÃO SOARES ◽  
E. V. TONINI

Nonlinear resonance is ubiquitous in nature. Resonance is relevant to understanding phenomena in quite distinct areas such as music, cellular structure, and astrophysics, and in the very early universe. In order to see the crucial role played by resonance in cosmology, we assume that closed FRW universes with a massive inflaton field evolve according to the field equations that contain additional terms arising from high energy corrections to cosmological scenarios. As a consequence, nonsingular bounces in the early evolution of the universe are produced. We have shown that in narrow windows of the parameter space of the models, nonlinear resonance phenomena of KAM tori occur and lead to the destruction of those tori that trap the inflaton, resulting in the escape of the universe into inflation. These resonance windows are labeled by an integer n ≥ 2; n is related to the ratio of the frequencies in the scale factor/scalar field degrees of freedom.


1994 ◽  
Vol 09 (12) ◽  
pp. 2103-2115 ◽  
Author(s):  
D.G. BARCI ◽  
L.E. OXMAN

We consider a fermionic field obeying a second order equation containing a pair of complex conjugate mass parameters. After obtaining a natural representation for the different degrees of freedom, we are able to construct a unique vacuum as the more symmetric state (zero energy-momentum, charge and spin). This representation, unlike the real mass case, is not holomorphic in the Grassmann variables. The vacuum eigenstate allows the calculation of the field propagator which turns out to be half advanced plus half retarded.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2004 ◽  
Vol 13 (10) ◽  
pp. 2275-2279 ◽  
Author(s):  
J. A. R. CEMBRANOS ◽  
A. DOBADO ◽  
A. L. MAROTO

Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space–time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.


Sign in / Sign up

Export Citation Format

Share Document