scholarly journals PROMPT PHOTON PRODUCTION IN p-p COLLISIONS

1995 ◽  
Vol 10 (20n21) ◽  
pp. 2941-2960 ◽  
Author(s):  
J. CLEYMANS ◽  
E. QUACK ◽  
K. REDLICH ◽  
D.K. SRIVASTAVA

A systematic study of the inclusive photon cross-section in p-p collisions is presented. The dependence of the γ rates on the renormalization and factorization scales is discussed. A comparison is made with experimental data for centre-of-mass energies ranging from 23 GeV to 1.8 TeV. Predictions of the cross-sections are given for two different sets of structure functions for RHIC and LHC energies.

2018 ◽  
Vol 18 (4) ◽  
pp. 362-378
Author(s):  
Yu. A. Gosteev ◽  
A. D. Obukhovskiy ◽  
S. D. Salenko

Introduction. The technique of numerical modeling of the transverse flow over span structures of bridges on the basis of the two-dimensional URANS (Unsteady Reynolds-averaged Navier-Stokes) approach used in the modern methods and software packages for computational fluid dynamics is verified. The work objective was debugging and experimental substantiation of this technique with the use of the database on the aerodynamic characteristics of the cross-sections of span structures of girder bridges of standard shapes pre-developed by the authors.Materials and Methods. A numerical simulation of the transverse flow of low-turbulent (smooth) and turbulent air flows around the bridge structures in a range of practically interesting attack angles is carried out. SST  k − ω turbulence model was used as the closing one. The technique was preliminarily tested on the check problem for the flow of the rectangular crosssection beams. Calculations were carried out using the licensed ANSYS software.Research Results. The calculated dependences on the attack angle of the aerodynamic coefficients of forces (drag and lift) and the moment of the cross sections of the girder bridges of standard shapes are obtained. These data refer to the span structures at the construction phase (without deck and parapets, without parapets) and operation phase, under the conditions of model smooth and turbulent incoming flow. The latter allows us to outline the boundaries for more weighted estimates of the aerodynamic characteristics of thegirder bridges in a real wind current. The best agreement with the experimental data was obtained from the drag of the cross-section. The magnitude of the lifting force is more sensitive to the presence and extent of the separation regions, so its numerical determination is less accurate. The reproduction of the angle-of-attack effect on the aerodynamic moment of the cross-section is the most challenging for the majority of configurations.Discussion and Conclusions. Comparison of the calculated and experimental data indicates the applicability of the URANS approach to the operational prediction of the aerodynamic characteristics of the single-beam span structures. In the case of multi-beam span structures, where the aerodynamic interference between separate girders plays an important role, the URANS approach must apparently give way to more accurate eddy-resolving methods. The results obtained can be used in the aerodynamic analysis of structures and in practice of the relevant design organizations in the field of transport construction.


Author(s):  
Susshma Nagarajan ◽  
Deepa Seetharaman ◽  
Gowrishankar Ramadurai

Synthesizing nuclei through reactions that produce a reasonable yield is important for the experimental study of neutron-rich nuclei. In this study, the cross-section values of 184Ta and 186Ta nuclei in various experiments were reviewed and analysed. The experimental data of (n, p), (p, x) and (n, α) reactions were compared to identify the best reaction to produce these nuclei for further study. Our study shows that (n, p) reactions on natural Tungsten targets are the most feasible reactions with a good yield of the neutron-rich Tantalum isotopes. New reactions have been proposed for the effective synthesis of 184Ta and 186Ta using tritium beams on Hafnium targets. The cross-section values of the proposed reactions were calculated by PACE4 software simulations.


Author(s):  
H. Tavakoli-Zaniani ◽  
M. Eslami-Kalantari ◽  
H. R. Amir-Ahmadi ◽  
M. T. Bayat ◽  
A. Deltuva ◽  
...  

AbstractA selection of measured cross sections and vector analyzing powers, $$A_{x}$$ A x and $$A_{y}$$ A y , are presented for the $$\vec {p}{d}$$ p → d break-up reaction. The data are taken with a polarized proton beam with a kinetic energy of 135 MeV using the Big Instrument for Nuclear-polarization Analysis (BINA) at KVI, the Netherlands. With this setup, $$A_{x}$$ A x is extracted for the first time for a large range of energies as well as polar and azimuthal angles of the two outgoing protons. For most of the configurations, the results at small and large relative azimuthal angles differ in behavior when comparing experimental data with the theoretical calculations. We also performed a more global comparison of our data with theoretical calculations. The cross-section results show huge values of $$\chi ^{2}$$ χ 2 /d.o.f.. The absolute values of $$\chi ^{2}$$ χ 2 /d.o.f. for the components of vector analyzing powers, $$A_{x}$$ A x and $$A_{y}$$ A y , are smaller than the ones for the cross section, partly due to larger uncertainties for these observables. However, also for these observables no satisfactory agreement is found for all angular combinations. This implies that the present models of a three-nucleon force are not able to provide a satisfactory description of experimental data.


A thin gas target was used and the 3 He and 3 H particles from the reactions were counted in two proportional counters which were rotated to make angles between 20 and 135° (in the centre-of-mass system) with the incident deuteron beam. In contradiction to data previously published for this energy range, the angular distributions of the reactions are different, the asymmetry of the neutron-producing reaction being the greater. The total cross-section of the neutron reaction is greater than that of the proton reaction; the ratio of the cross-sections increases with bombarding energy.


2022 ◽  
Author(s):  
RATANKUMAR SINGH ◽  
N.L. Singh ◽  
Rakesh Chauhan ◽  
Mayur Mehta ◽  
Saraswatula suryanarayan ◽  
...  

Abstract The cross sections of the 121Sb(n,2n) 120Sbm and 123Sb(n,2n) 122Sb reactions were measured at 12.50, 15.79 and 18.87 MeV neutron energies relative to the standard 27Al(n,α) 24Na monitor reaction using neutron activation and offline γ-ray spectrometry technique. Irradiations of the samples were performed at the BARC-TIFR Pelletron Linac Facility, Mumbai, India. The quasi-monoenergetic neutron was generated via the 7Li(p,n) reaction. Statistical model calculations were performed by nuclear reaction codes TALYS (ver. 1.9) and EMPIRE (ver. 3.2.2) using various input parameters and nuclear level density models. The cross sections of the ground and the isomeric state as well as the isomeric cross section ratio were studied theoretically from reaction threshold to 26 MeV energies. The effect of pre-equilibrium emission is also discussed in detail using different theoretical models. The present measured cross section were discussed and compared with reported experimental data and evaluation data of the JEFF-3.3, ENDF/B-VIII.0, JENDL/AD-2017 and TENDL-2019 libraries. A detailed analysis of the uncertainties in the measured cross section data was performed using the covariance analysis method. Furthermore, a systematic study of the (n,2n) reaction cross section for 121Sb and 123Sb isotopes were also performed within 14-15 MeV neutron energies using various systematic formulae. This work helps to overcome discrepancies in Sb data and illustrate a better understanding of pre-equilibrium emission in (n,2n) reaction channel.


1990 ◽  
Vol 248 (3-4) ◽  
pp. 371-377 ◽  
Author(s):  
Edmond L. Berger ◽  
Jianwei Qiu

2020 ◽  
Vol 29 (02) ◽  
pp. 2050005 ◽  
Author(s):  
M. Yiğit

Empirical formulas in determining the cross-sections play an important role at the energies of which there are no experimental data scattered about. The purpose of the present communication is to further improve the formulas of the cross-section of [Formula: see text] reactions at the energies near 14.6[Formula: see text]MeV. A systematics for the evaluation of these cross-sections is studied. We present the empirical formulas based on the statistical theory of nuclear reactions in connection with the compound nucleus. The new empirical formulas are found by using the experimental cross-sections as a function of the reaction [Formula: see text]-value. Thus, the new formulas provide the best description of the existing measured data compared with systematics suggested earlier by other authors.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract The pT-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity (|y|< 0.5) in proton-proton collisions at $$ \sqrt{s} $$ s = 5.02 TeV. The data sample used in the analysis corresponds to an integrated luminosity of (19.3 ± 0.4) nb−1. D mesons were reconstructed from their decays D0→ K−π+, D+→ K−π+π+, and $$ {\mathrm{D}}_{\mathrm{s}}^{+}\to \upphi {\uppi}^{+}\to {\mathrm{K}}^{-}{\mathrm{K}}^{+}{\uppi}^{+} $$ D s + → ϕ π + → K − K + π + and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt D+ and $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ D s + mesons have an extended pT coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on pT, allowing for a more precise determination of their pT-integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, fs/(fu + fd), is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $$ \mathrm{b}\overline{\mathrm{b}} $$ b b ¯ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $$ \mathrm{d}{\sigma}_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y\left|{}_{\left|\mathrm{y}\right|<0.5}=34.5\pm 2.4{\left(\mathrm{stat}\right)}_{-2.9}^{+4.7}\left(\mathrm{tot}.\mathrm{syst}\right)\right. $$ d σ b b ¯ / d y y < 0.5 = 34.5 ± 2.4 stat − 2.9 + 4.7 tot . syst μb. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section pre- dicted by perturbative QCD calculations.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


Sign in / Sign up

Export Citation Format

Share Document