THE APPLICATION OF TAPANULI CLAY AS NANOFILLER IN NANOCOMPOSITES: SYNTHESIS AND THEIR CHARACTERIZATION

2010 ◽  
Vol 24 (01n02) ◽  
pp. 148-156 ◽  
Author(s):  
ARIADNE L. JUWONO ◽  
RIWANDI SIHOMBING ◽  
YUNI K. KRISNANDI ◽  
SUTARNO ◽  
HANDOKO SUBAWI ◽  
...  

Organo layered silicates (OLS) were successfully synthesized from Tapanuli clay through an intercalated ultrasonic method using hexadecyltrimethylamonium bromide ( HDTMABr ) as a cation exchange agent. Tapanuli clay–epoxy nanocomposites were also successfully synthesized with an in-situ polymerization. X-Ray Diffraction and Transmission Electron Microscope (TEM) results demonstrated a pattern of clay morphology typically found in nanocomposite systems. Although the nanocomposites' diffractogram showed an exfoliation structure, the TEM findings confirmed that the OLS d -spacing is between 2.58 nm (the minimum value) up to 14.74 nm (the maximum value); which indicates the nanocomposites posses a mixed structure between intercalated and exfoliated structures. It was found that the presence of 1wt% Tapanuli organo clay in the epoxy systems provides higher stiffness and higher Heat Deflection Temperature by 30 % and 7 % respectively.

2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Orietta Monticelli ◽  
Zenfira Musina ◽  
Francesca Ghigliotti ◽  
Saverio Russo ◽  
Valerio Causin

AbstractNanocomposites based on polyamide 6 (PA6) and montmorillonite-type (MMT) commercial clays, either unmodified or organically modified, were prepared by in-situ polymerization of ε-caprolactam (CL). The above materials were characterized in detail by a number of experimental techniques, including transmission electron microscopy (TEM), wide angle X-ray diffraction (WAXD), infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The formation of nanostructured systems was checked not only for the commonly used ω-aminoacid-modified clay, but also for other types of organoclays. In general, a correlation was found between nanoscopic swelling of the clay in molten CL, measured by X-ray diffraction, and level of clay dispersion in PA6. Specifically, with the most swellable clays, completely exfoliated nanocomposites were obtained. However, also layered silicates modified by compatibilizers having carboxy groups, because of the active role of latter in CL polymerization, formed delaminated nanocomposites despite their low degree of swelling in CL monomer. Both molecular mass and crystallinity of the polyamide matrix were found to be strongly influenced by the presence of specific layered silicates. In particular, some characterization techniques (WAXD, FTIR) have evidenced a close relationship between the MMT used and PA6 crystal structure. Namely, PA6 γ-form is promoted by clay with compatibilizer bearing the carboxy group, which is able to induce the polymer to be tethered on the silicate layers, thus provoking conditions of restricted mobility to occur.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 3247-3253 ◽  
Author(s):  
B. T. MAROUF ◽  
R. BAGHERI ◽  
R. A. PEARSON

In this investigation, the mechanical and thermal properties of the montmorillonite-epoxy nanocomposites were studied. The epoxy compounds were prepared by in situ polymerization and the intercalation dispersion were obtained as evidenced using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results reveal remarkable stiffening effect and slight toughening effect of the MMT in the epoxy resin and an insight about the crack tip and notch tip toughening mechanism. According to the DMA, the glass transition temperature increases as increasing the MMT content.


2010 ◽  
Vol 654-656 ◽  
pp. 1154-1157 ◽  
Author(s):  
Yu Lu ◽  
Wei Jin ◽  
Wen Chen

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.


2018 ◽  
Vol 39 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Xiaochao Liu ◽  
Dengwang Lai ◽  
Yuejun Liu ◽  
Pu Shi ◽  
Wenzhi Wang ◽  
...  

AbstractIn this study, PA6-66/γ-aminopropyltriethoxysilane-modified clay nanocomposites were prepared byin situpolymerization. It was found that the γ-aminopropyltriethoxysilane was chemically grafted onto clay successfully, and the covalent bond was formed between the clay and polymer chains. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) results indicated that intercalated and exfoliated nanocomposites were obtained. The PA6-66 nanocomposites exhibited improved mechanical performance compared to that of neat PA6-66. Most importantly, the PA6-66 nanocomposites showed significantly improved toughness. In comparison with neat PA6-66, the rupture stress and elongation at the break of the nanocomposite with only 0.5 wt% clay increased 91.9% and 91.8%, respectively. The excellent toughness of PA6-66 nanocomposites should be mainly ascribed to the combined effects of strong polymer-clay interaction, the intercalated-exfoliated structures of clay, refined crystalline, formation of γ-form crystals, and decreased crystallinity of PA6-66.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


Sign in / Sign up

Export Citation Format

Share Document