A NEW METHOD FOR GENERATING A NEW INTEGRABLE SYSTEM

2011 ◽  
Vol 25 (11) ◽  
pp. 1553-1558
Author(s):  
XIURONG GUO

With the help of the known Lie algebra given by Zhang,2 a new higher-dimensional Lie algebra G is obtained by generalizing the commutative operations in the Lie algebras. Using a subalgebra [Formula: see text] of a loop algebra [Formula: see text] which corresponds to the Lie algebra G, a new heat-conduction equation hierarchy with some constrained conditions, is obtained. We again consider the constrained conditions as new evolution equations, the new scheme for generating soliton equations are given. Then we use the loop algebra [Formula: see text] to further establish an isospectral problem and derive an extending integrable model of the above heat-condition hierarchy, we also obtain a corresponding extending constrained condition which is thought as a type of evolution equations.

2008 ◽  
Vol 22 (19) ◽  
pp. 1837-1850 ◽  
Author(s):  
YUFENG ZHANG ◽  
YAN LI

A new higher-dimensional loop algebra is given for which a Lax isospectral problem is set up whose compatibility condition gives rise to a Liouville integrable soliton hierarchy along with eight-component potential functions. Specially, the hierarchy of evolution equations has a tri-Hamiltonian structure obtained by the trace identity.


2008 ◽  
Vol 86 (12) ◽  
pp. 1367-1380 ◽  
Author(s):  
Y Zhang ◽  
H Tam

A few isospectral problems are introduced by referring to that of the cKdV equation hierarchy, for which two types of integrable systems called the (1 + 1)-dimensional m-cKdV hierarchy and the g-cKdV hierarchy are generated, respectively, whose Hamiltonian structures are also discussed by employing a linear functional and the quadratic-form identity. The corresponding expanding integrable models of the (1 + 1)-dimensional m-cKdV hierarchy and g-cKdV hierarchy are obtained. The Hamiltonian structure of the latter one is given by the variational identity, proposed by Ma Wen-Xiu as well. Finally, we use a Lax pair from the self-dual Yang–Mills equations to deduce a higher dimensional m-cKdV hierarchy of evolution equations and its Hamiltonian structure. Furthermore, its expanding integrable model is produced by the use of a enlarged Lie algebra.PACS Nos.: 02.30, 03.40.K


2012 ◽  
Vol 442 ◽  
pp. 124-128
Author(s):  
Jian Ya Ge ◽  
Tie Cheng Xia

We devise a new simple loop algebra GM and an isospectral problem. By making use of Tu scheme, the multi-component Jaulent-Miodek (JM) hierarchy is obtained. Furthermore, an expanding loop algebra FM of the loop algebra GM is presented. Based on FM the multi-component integrable couplings system with two arbitrary functions of the multi-component Jaulent-Miodek (JM) hierarchy are worked out. The method can be applied to other nonlinear evolution equations hierarchies.


2010 ◽  
Vol 24 (14) ◽  
pp. 1573-1594 ◽  
Author(s):  
YUFENG ZHANG ◽  
HONWAH TAM ◽  
JIANQIN MEI

Using a 4-dimensional Lie algebra g, an isospectral Lax pair is introduced, whose compatibility condition is equivalent to a soliton hierarchy of evolution equations with three components of potential functions. Its Hamiltonian structure is obtained by employing the quadratic-form identity proposed by Guo and Zhang. In order to obtain explicit Hamiltonian functions, a detailed computing formula for the constant appearing in the quadratic-form identity is obtained. One type of reduction equations of the hierarchy is also produced, which is further reduced to the standard equation of heat conduction. By introducing a loop algebra of the Lie algebra g, we obtain a soliton hierarchy with an arbitrary parameter which can be reduced to the previous equation hierarchy obtained, whose quasi-Hamiltonian structure is also worked out by the quadratic-form identity. Finally, we extend the Lie algebra g into a higher-dimensional Lie algebra so that a new integrable Hamiltonian hierarchy, which comprise integrable couplings, is produced; its reduced equations in particular contain two arbitrary parameters.


1981 ◽  
Vol 1 (3) ◽  
pp. 361-380 ◽  
Author(s):  
George Wilson

AbstractWe associate to each complex simple Lie algebra g a hierarchy of evolution equations; in the simplest case g = sl(2) they are the modified KdV equations. These new equations are related to the two-dimensional Toda lattice equations associated with g in the same way that the modified KdV equations are related to the sinh-Gordon equation.


Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

In this paper, we first introduce a nonisospectral problem associate with a loop algebra. Based on the nonisospectral problem, we deduce a nonisospectral integrable hierarchy by solving a nonisospectral zero curvature equation. It follows that the standard AKNS hierarchy and KN hierarchy are obtained by reducing the resulting nonisospectral hierarchy. Then, the Hamiltonian system of the resulting nonisospectral hierarchy is investigated based on the trace identity. Additionally, an extended integrable system of the resulting nonisospectral hierarchy is worked out based on an expanded higher-dimensional Loop algebra.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 465
Author(s):  
Javier de Lucas ◽  
Daniel Wysocki

This work introduces a new concept, the so-called Darboux family, which is employed to determine coboundary Lie bialgebras on real four-dimensional, indecomposable Lie algebras, as well as geometrically analysying, and classifying them up to Lie algebra automorphisms, in a relatively easy manner. The Darboux family notion can be considered as a generalisation of the Darboux polynomial for a vector field. The classification of r-matrices and solutions to classical Yang–Baxter equations for real four-dimensional indecomposable Lie algebras is also given in detail. Our methods can further be applied to general, even higher-dimensional, Lie algebras. As a byproduct, a method to obtain matrix representations of certain Lie algebras with a non-trivial center is developed.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1629-1636
Author(s):  
Xiu-Rong Guo ◽  
Yu-Feng Zhang ◽  
Mei Guo ◽  
Zheng-Tao Liu

Under a frame of 2 ? 2 matrix Lie algebras, Tu and Meng [9] once established a united integrable model of the Ablowitz-Kaup-Newel-Segur (AKNS) hierarchy, the D-AKNS hierarchy, the Levi hierarchy and the TD hierarchy. Based on this idea, we introduce two block-matrix Lie algebras to present an isospectral problem, whose compatibility condition gives rise to a type of integrable hierarchy which can be reduced to the Levi hierarchy and the AKNS hierarchy, and so on. A united integrable model obtained by us in the paper is different from that given by Tu and Meng. Specially, the main result in the paper can be reduced to two new various integrable couplings of the Levi hierarchy, from which we again obtain the standard heat equation and a special Newell-Whitehead equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Guangming Wang

Tu Guizhang and Xu Baozhi once introduced an isospectral problem by a loop algebra with degree beingλ, for which an integrable hierarchy of evolution equations (called the TX hierarchy) was derived under the frame of zero curvature equations. In the paper, we present a loop algebra whose degrees are2λand2λ+1to simply represent the above isospectral matrix and easily derive the TX hierarchy. Specially, through enlarging the loop algebra with 3 dimensions to 6 dimensions, we generate a new integrable coupling of the TX hierarchy and its corresponding Hamiltonian structure.


Sign in / Sign up

Export Citation Format

Share Document