scholarly journals A new approach for finding standard heat equation and a special Newell-whitehead equation

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1629-1636
Author(s):  
Xiu-Rong Guo ◽  
Yu-Feng Zhang ◽  
Mei Guo ◽  
Zheng-Tao Liu

Under a frame of 2 ? 2 matrix Lie algebras, Tu and Meng [9] once established a united integrable model of the Ablowitz-Kaup-Newel-Segur (AKNS) hierarchy, the D-AKNS hierarchy, the Levi hierarchy and the TD hierarchy. Based on this idea, we introduce two block-matrix Lie algebras to present an isospectral problem, whose compatibility condition gives rise to a type of integrable hierarchy which can be reduced to the Levi hierarchy and the AKNS hierarchy, and so on. A united integrable model obtained by us in the paper is different from that given by Tu and Meng. Specially, the main result in the paper can be reduced to two new various integrable couplings of the Levi hierarchy, from which we again obtain the standard heat equation and a special Newell-Whitehead equation.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xiurong Guo ◽  
Yufeng Zhang ◽  
Xuping Zhang

As far as linear integrable couplings are concerned, one has obtained some rich and interesting results. In the paper, we will deduce two kinds of expanding integrable models of the Geng-Cao (GC) hierarchy by constructing different 6-dimensional Lie algebras. One expanding integrable model (actually, it is a nonlinear integrable coupling) reduces to a generalized Burgers equation and further reduces to the heat equation whose expanding nonlinear integrable model is generated. Another one is an expanding integrable model which is different from the first one. Finally, the Hamiltonian structures of the two expanding integrable models are obtained by employing the variational identity and the trace identity, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Guangming Wang

Tu Guizhang and Xu Baozhi once introduced an isospectral problem by a loop algebra with degree beingλ, for which an integrable hierarchy of evolution equations (called the TX hierarchy) was derived under the frame of zero curvature equations. In the paper, we present a loop algebra whose degrees are2λand2λ+1to simply represent the above isospectral matrix and easily derive the TX hierarchy. Specially, through enlarging the loop algebra with 3 dimensions to 6 dimensions, we generate a new integrable coupling of the TX hierarchy and its corresponding Hamiltonian structure.


2009 ◽  
Vol 23 (24) ◽  
pp. 4855-4879 ◽  
Author(s):  
HONWAH TAM ◽  
YUFENG ZHANG

An isospectral problem is introduced, a spectral radius of the corresponding spectral matrix is obtained, which enlightens us to set up an isospectral problem whose compatibility condition gives rise to a zero curvature equation in formalism, from which a Lax integrable soliton equation hierarchy with constraints of potential functions is generated along with 5 parameters, whose reduced cases present three integrable systems, i.e., AKNS hierarchy, Levi hierarchy and D-AKNS hierarchy. Enlarging the above Lie algebra into two bigger ones, the two integrable couplings of the hierarchy are derived, one of them has Hamiltonian structure by employing the quadratic-form identity or variational identity. The corresponding integrable couplings of the reduced systems are obtained, respectively. Finally, as comparing study for generating expanding integrable systems, a Lie algebra of antisymmetric matrices and its corresponding loop algebra are constructed, from which a great number of enlarging integrable systems could be generated, especially their Hamiltonian structure could be computed by the trace identity.


Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

In this paper, we first introduce a nonisospectral problem associate with a loop algebra. Based on the nonisospectral problem, we deduce a nonisospectral integrable hierarchy by solving a nonisospectral zero curvature equation. It follows that the standard AKNS hierarchy and KN hierarchy are obtained by reducing the resulting nonisospectral hierarchy. Then, the Hamiltonian system of the resulting nonisospectral hierarchy is investigated based on the trace identity. Additionally, an extended integrable system of the resulting nonisospectral hierarchy is worked out based on an expanded higher-dimensional Loop algebra.


2010 ◽  
Vol 24 (17) ◽  
pp. 3453-3460 ◽  
Author(s):  
JIAO ZHANG ◽  
XIAOLI WEI

In this paper, by making use of the generalized Tu scheme, we consider an isospectral problem, and then a new integrable hierarchy is constructed. It is shown that the generalized Levi hierarchy can be obtained as a reduction. Further, integrable couplings of the generalized Levi hierarchy is produced based on an enlarging isospectral problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Binlu Feng ◽  
Yufeng Zhang ◽  
Huanhe Dong

Two high-dimensional Lie algebras are presented for which four (1+1)-dimensional expanding integrable couplings of the D-AKNS hierarchy are obtained by using the Tu scheme; one of them is a united integrable coupling model of the D-AKNS hierarchy and the AKNS hierarchy. Then (2+1)-dimensional DS hierarchy is derived by using the TAH scheme; in particular, the integrable couplings of the DS hierarchy are obtained.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Juhui Zhang ◽  
Yuqin Yao

A new type of two-component Casimir-Qiao-Liu type hierarchy (2-CQLTH) is produced from a new spectral problem and their bi-Hamiltonian structures are constructed. Particularly, a new completely integrable two-component Casimir-Qiao-Liu type equation (2-CQLTE) is presented. Furthermore, based on the semidirect sums of matrix Lie algebras consisting of3×3block matrix Lie algebra, the bi-integrable couplings of the 2-CQLTH are constructed and their bi-Hamiltonian structures are furnished.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Cao ◽  
Liangyun Chen ◽  
Baiying He

Based on the six-dimensional real special orthogonal Lie algebraSO(4), a new Lax integrable hierarchy is obtained by constructing an isospectral problem. Furthermore, we construct bi-integrable couplings for this hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Hamiltonian structures of the obtained bi-integrable couplings are constructed by the variational identity.


2011 ◽  
Vol 25 (11) ◽  
pp. 1553-1558
Author(s):  
XIURONG GUO

With the help of the known Lie algebra given by Zhang,2 a new higher-dimensional Lie algebra G is obtained by generalizing the commutative operations in the Lie algebras. Using a subalgebra [Formula: see text] of a loop algebra [Formula: see text] which corresponds to the Lie algebra G, a new heat-conduction equation hierarchy with some constrained conditions, is obtained. We again consider the constrained conditions as new evolution equations, the new scheme for generating soliton equations are given. Then we use the loop algebra [Formula: see text] to further establish an isospectral problem and derive an extending integrable model of the above heat-condition hierarchy, we also obtain a corresponding extending constrained condition which is thought as a type of evolution equations.


Sign in / Sign up

Export Citation Format

Share Document