Sol-gel-based doped granulated silica for the rapid production of optical fibers

2014 ◽  
Vol 28 (12) ◽  
pp. 1442010 ◽  
Author(s):  
Valerio Romano ◽  
Soenke Pilz ◽  
Dereje Etissa

In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity rare earth or transition metal-activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used and allows for the implementation of fiber microstructures. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers have been produced and three of them will be presented here.

2017 ◽  
Author(s):  
Christoph Engwer ◽  
Ronja Loy ◽  
Ioannis S. Chronakis ◽  
Ana C. Mendes ◽  
Francisco M. Goycoolea

Genipin is increasingly used as a crosslinking agent for chitosans due to its low cytotoxicity as a naturally occurring extract of the plant <i>Gardenia jasminoides</i>. Genipin reacts with the primary amino groups of chitosan to form blue hydrogels. We studied the gelation kinetics of different chitosans varying in their properties (molar mass 34 000-213 000 g mol<sup>-1</sup>, degree of acetylation 9-20%) and genipin in detail. We found that critical sol-gel transition times obtained from dynamic light scattering were in good agreement with the results obtained by small deformation oscillatory rheometry and microviscosimetry at high concentrations of chitosan. However, at below critical concentrations, we found a second regime of gelation that followed the same Ross-Murphy's gelation kinetics. The macroscopic appearance of these samples was a suspension of weak gel-like particles that were sensitive to mechanical forces. We believe that the material is a mesoscopic gel, as described for other polymers. To the best of our knowledge, this is the first time that this phenomenon has been described for the gelling system of chitosan and genipin.


2013 ◽  
Vol 30 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Yiping Wang ◽  
Changrui Liao ◽  
Jiangtao Zhou ◽  
Yingjie Liu ◽  
Zhengyong Li ◽  
...  

2010 ◽  
Vol 28 (10) ◽  
pp. 1459-1467 ◽  
Author(s):  
Thomas Geernaert ◽  
Martin Becker ◽  
Pawel Mergo ◽  
Tomasz Nasilowski ◽  
Jan Wojcik ◽  
...  

2013 ◽  
Vol 543 ◽  
pp. 302-305
Author(s):  
Daniele Tosi ◽  
Massimo Olivero ◽  
Alberto Vallan ◽  
Guido Perrone

The paper analyzes the feasibility of cost-effective fiber sensors for the measurement of small vibrations, from low to medium-high frequencies, in which the complexity of the measurement is moved from expensive optics to cheap electronics without losing too much performance thanks to signal processing algorithms. Two optical approaches are considered: Bragg gratings in standard telecom fibers, which represent the most common type of commercial fiber sensors, and specifically developed sensors made with plastic optical fibers. In both cases, to keep the overall cost low, vibrations are converted into variations of the light intensity, although this makes the received signal more sensitive to noise. Then, adaptive filters and advanced spectral estimation techniques are used to mitigate noise and improve the sensitivity. Preliminary results have demonstrated that the combined effect of these techniques can yield to a signal-to-noise improvement of about 30 dB, bringing the proposed approaches to the level of the most performing sensors for the measurement of vibrations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoran Wang ◽  
Anton Enders ◽  
John-Alexander Preuss ◽  
Janina Bahnemann ◽  
Alexander Heisterkamp ◽  
...  

Abstract3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kayeen Vadakkan ◽  
Meena K Cheruvathur ◽  
Anu S Chulliparambil ◽  
Famy Francis ◽  
Anu P Abimannue

Abstract Background There have been several studies carried out to irradiate Helminthiasis however very little research have been carried out where in the enzymatic activity of plants are exploited to antagonize infections. Here we are analyzing the anthelmintic activity of Cinnamomum cappara leaf extract against Pheretima posthuma complimented by proteolytic action. Results The fresh leaves of Cinnamomum cappara was collected from local areas of Thrissur during December 2019. Plants were identified and authenticated by morphological and molecular characterization. The enzymatic action was analyzed by plotting Lineweaver–Burk plot which suggested that the extract possess the Km 185.77 μM for casein as substrate and obeyed Michaelis–Menten kinetics with typical hyperbolic relation with enzyme and increasing concentration of substrate. The effect of extract upon study subject was in directly proportional with concentration of antagonist where higher activities were obtained in high concentrations. The anatomical and histological studies suggested that the activity of extract was due to the degradation of muscular bundle of subject that resulted in the leakage of ceolomic fluid. Conclusions Cinnamomum cappara leaf extract possessed high degree of protease intervened anthelmintic activity against Pheretima posthuma. As the study subject show immense morphological and physiological resemblance with all other helminthic parasites, this results shall be adopted to further clinical and pharmacological applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Bidaud ◽  
D. Berling ◽  
D. Jamon ◽  
E. Gamet ◽  
S. Neveu ◽  
...  

AbstractThis paper is aimed at investigating the process of photocrosslinking under Deep-UV irradiation of nanocomposite thin films doped with cobalt ferrite magnetic nanoparticles (MNPs). This material is composed of a hybrid sol–gel matrix in which MNP can be introduced with high concentrations up to 20 vol%. Deep-UV (193 nm) is not only interesting for high-resolution patterning but we also show an efficient photopolymerization pathway even in the presence of high concentration of MNPs. In this study, we demonstrate that the photocrosslinking is based on the free radical polymerization of the methacrylate functions of the hybrid precursor. This process is initiated by Titanium-oxo clusters. The impact of the nanoparticles on the photopolymerization kinetic and photopatterning is investigated. We finally show that the photosensitive nanocomposite is suitable to obtain micropatterns with sub-micron resolution, with a simple and versatile process, which opens many opportunities for fabrication of miniaturized magneto-optical devices for photonic applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Amitava Ghosh ◽  
Prithviraj Chakraborty

Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects.Methods. Ionotropic Gelation technique was adopted employing 32Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and Acrycoat E30D (copolymer) dispersion.Result. Sodium alginate was predominant over Acrycoat E30D in all batches. Nonadditives or interaction was observed to be insignificant. Multiple regressions produced second-order polynomial equation, and the predictive results obtained were validated with high degree of correlation. Thein vivostudy applauded that optimized calcium alginate micropellets of frusemide can produce a much greater diuretic effect over an extended period of 24 hours.Conclusion. This study reveals that the potential of a single dose of the mathematically optimized micro pellets of frusemide formulation is sufficient in the management of peripheral edema and ascites in congestive heart failure and as well in the treatment of chronic hypertension, leading to better patient compliance, and can be produced with minimum experimentation and time, proving far more cost-effective formulation than the conventional methods of formulating dosage forms.


Sign in / Sign up

Export Citation Format

Share Document