Generalization of the Gross–Pitaevskii equation for multi-particle cases

Author(s):  
Nicolai Bogoliubov ◽  
Mukhayo Rasulova ◽  
Tohir Akramov

A new method is proposed to obtain Gross–Pitaevskii equation by the chain of Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) quantum kinetic equations. In that sense, we investigate the dynamics of a quantum system including infinite number of identical particles which interact via a (special) pair potential on the form of Dirac delta-function.

2020 ◽  
Author(s):  
Matheus Pereira Lobo

I present a finite result for the Dirac delta "function."


2001 ◽  
Vol 694 ◽  
Author(s):  
Fredy R Zypman ◽  
Gabriel Cwilich

AbstractWe obtain the statistics of the intensity, transmission and conductance for scalar electromagnetic waves propagating through a disordered collection of scatterers. Our results show that the probability distribution for these quantities x, follow a universal form, YU(x) = xne−xμ. This family of functions includes the Rayleigh distribution (when α=0, μ=1) and the Dirac delta function (α →+ ∞), which are the expressions for intensity and transmission in the diffusive regime neglecting correlations. Finally, we find simple analytical expressions for the nth moment of the distributions and for to the ratio of the moments of the intensity and transmission, which generalizes the n! result valid in the previous case.


Resonance ◽  
2003 ◽  
Vol 8 (8) ◽  
pp. 48-58 ◽  
Author(s):  
V Balakrishnan

2020 ◽  
Vol 6 (2) ◽  
pp. 158-163
Author(s):  
B. B. Dhanuk ◽  
K. Pudasainee ◽  
H. P. Lamichhane ◽  
R. P. Adhikari

One of revealing and widely used concepts in Physics and mathematics is the Dirac delta function. The Dirac delta function is a distribution on real lines which is zero everywhere except at a single point, where it is infinite. Dirac delta function has vital role in solving inhomogeneous differential equations. In addition, the Dirac delta functions can be used to explore harmonic information’s imbedded in the physical signals, various forms of Dirac delta function and can be constructed from the closure relation of orthonormal basis functions of functional space. Among many special functions, we have chosen the set of eigen functions of the Hamiltonian operator of harmonic oscillator and angular momentum operators for orthonormal basis. The closure relation of orthonormal functions  used to construct the generator of Dirac delta function which is used to expand analytic functions log(x + 2),exp(-x2) and x within the valid region of arguments.


Sign in / Sign up

Export Citation Format

Share Document