Sintering characteristics and microwave dielectric properties of 0.5(Ca0.7Nd0.2)TiO3–0.5(Li0.5Nd0.5)TiO3 ceramics with La2O3–B2O3–CaO–P2O5 additive
In this paper, the effects of glass-ceramics sintering aid, La2O3–B2O3–CaO–P2O5 (LBCP), on the sinterability, microstructure, and microwave dielectric properties of 0.5(Ca[Formula: see text]Nd[Formula: see text]TiO3–0.5(Li[Formula: see text]Nd[Formula: see text]TiO3 (CNT–LNT) ceramic have been investigated. The results indicated that LBCP glass-ceramics has good wettability to CNT–LNT (contact angle at 980[Formula: see text]C is 31.9[Formula: see text]), and it can be used as an effective sintering aid to reduce the sintering temperature of CNT–LNT ceramic from 1300[Formula: see text]C to 980[Formula: see text]C. LBCP glass-ceramics did not change the main crystal phase (perovskite structure) of the sample, but a small amount of LaBO3 and LaPO4 phases was precipitated. Since the LaBO3 and LaPO4 phases are low-loss phases, it is believed that the crystal phases can improve the dielectric properties of the sample, especially the dielectric loss. The samples with 10 wt.% of glass additive sintered for 4 h at 980[Formula: see text]C exhibit the optimized properties: a high dielectric constant of 80.8 and a [Formula: see text] value of 2031 GHz. The high [Formula: see text] and [Formula: see text] value, coupled with a relatively low sintering temperature, suggest that the optimized compositions have the potential to be used in microwave low-temperature co-fired ceramics applications.