scholarly journals Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

2014 ◽  
Vol 04 (04) ◽  
pp. 1450034 ◽  
Author(s):  
Chian Heng Lee ◽  
Jumiah Hassan ◽  
Mansor Hashim ◽  
Raba'ah Syahidah Aziz ◽  
Norlaily Mohd Saiden

The desirable characteristics of Ba 6-3x Nd 8+2x Ti 18 O 54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba 6-3x Nd 8+2x Ti 18 O 54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C) were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

Author(s):  
Jiawen Shi ◽  
Xingyu Chen ◽  
Weijun Zhang ◽  
Haijun Mao ◽  
Fenglin Wang ◽  
...  

In this paper, the effects of glass-ceramics sintering aid, La2O3–B2O3–CaO–P2O5 (LBCP), on the sinterability, microstructure, and microwave dielectric properties of 0.5(Ca[Formula: see text]Nd[Formula: see text]TiO3–0.5(Li[Formula: see text]Nd[Formula: see text]TiO3 (CNT–LNT) ceramic have been investigated. The results indicated that LBCP glass-ceramics has good wettability to CNT–LNT (contact angle at 980[Formula: see text]C is 31.9[Formula: see text]), and it can be used as an effective sintering aid to reduce the sintering temperature of CNT–LNT ceramic from 1300[Formula: see text]C to 980[Formula: see text]C. LBCP glass-ceramics did not change the main crystal phase (perovskite structure) of the sample, but a small amount of LaBO3 and LaPO4 phases was precipitated. Since the LaBO3 and LaPO4 phases are low-loss phases, it is believed that the crystal phases can improve the dielectric properties of the sample, especially the dielectric loss. The samples with 10 wt.% of glass additive sintered for 4 h at 980[Formula: see text]C exhibit the optimized properties: a high dielectric constant of 80.8 and a [Formula: see text] value of 2031 GHz. The high [Formula: see text] and [Formula: see text] value, coupled with a relatively low sintering temperature, suggest that the optimized compositions have the potential to be used in microwave low-temperature co-fired ceramics applications.


2010 ◽  
Vol 25 (7) ◽  
pp. 1235-1238 ◽  
Author(s):  
Huanfu Zhou ◽  
Xiuli Chen ◽  
Liang Fang ◽  
Dongjin Chu ◽  
Hong Wang

A new low sintering temperature microwave dielectric ceramic, Li2ZnTi3O8, was investigated. X-ray diffraction data show that Li2ZnTi3O8 has a cubic structure [P4332(212)] with lattice parameters a = 8.37506 Å, V = 587.44 Å3, and Z = 4 when the sintering temperature is 1050 °C. The Li2ZnTi3O8 ceramic exhibits good microwave dielectric properties with εr about 26.2, Q×f value about 62,000 GHz, and τf about −15 ppm/°C. The addition of BaCu(B2O5) can effectively lower the sintering temperature from 1050 to 900 °C without degrading the microwave dielectric properties. Compatibility with Ag electrode indicates this material can be applied to low temperature cofired ceramic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asad Ali ◽  
Sarir Uddin ◽  
Madan Lal ◽  
Abid Zaman ◽  
Zafar Iqbal ◽  
...  

AbstractSn-doped BaTi4O9 (BT4) dielectric ceramics were prepared by a mixed oxide route. Preliminary X-ray diffraction (XRD) structural study shows that the ceramic samples have orthorhombic symmetry with space group (Pnmm). Scanning electron microscopy (SEM) shows that the grain size of the samples decreases with an increase in Sn4+ content. The presence of the metal oxide efficient group was revealed by Fourier transform infrared (FTIR) spectroscopy. The photoluminescence spectra of the ceramic samples reported red color ~ 603, 604, 606.5 and 605 nm with excitation energy ~ 2.06, 2.05, 2.04 and 2.05 eV for Sn4+ content with x = 0.0, 0.3, 0.5, and 0.7, respectively. The microwave dielectric properties of these ceramic samples were investigated by an impedance analyzer. The excellent microwave dielectric properties i.e. high dielectric constant (εr = 57.29), high-quality factor (Qf = 11,852), or low-dielectric loss (3.007) has been observed.


2020 ◽  
Vol 830 ◽  
pp. 37-42
Author(s):  
Shih Sheng Liu ◽  
Shiuan Ho Chang ◽  
Yuan Bin Chen

The microwave dielectric properties and microstructures of the (1-x)(Mg0.95Zn0.05)2TiO4-x (Ca0.8Sr0.2)TiO3 ceramics prepared using the conventional solid-state route were investigated. The structure and microstructure were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Ilmenite-structured (Mg0.95Zn0.05)TiO3 was detected as a second phase. The coexistence of the second phase, however, did not degrade the dielectric properties of the specimen because the phases were compatible. At x = 0.07, a dielectric constant (εr) of ~17.86, a quality factor (Q×f) value of ~ Q×f~133,600 Hz (at 10 GHz), and a temperature coefficient of resonant frequency (τf) of ~ –5ppm/°Cwere obtained for 0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3 ceramic sintered at 1240°C for 4 hr. The dielectric is proposed as a candidate material for low-loss microwave and millimeter wave applications.


Sign in / Sign up

Export Citation Format

Share Document