Electrochemical behavior of hydrogen precipitated Zircaloy-4
This work investigates the hydrogen precipitation effects on the electrochemical behavior of Zircaloy-4 in acidic saline media. The specimens of Zircaloy-4 were hydrogen charged at 200, 400 and 600 ppm concentrations for 30 min at 400[Formula: see text]C. X-ray diffraction (XRD) studies confirmed the formation of delta hydrides in the material. Scanning electron microscopy (SEM) results also indicated the presence of elongated hydrides whose density and thickness increased with the increase of hydrogen concentration in the alloy. The corrosion kinetics of the specimens were explored before and after hydrogen precipitation using potentiodynamic anodic polarization (PAP) and electrochemical impedance spectroscopy (EIS) techniques. The results showed that hydrogen precipitation shifts the corrosion potential towards more positive and thus improves the corrosion resistance of the alloy. The charge transfer resistance [Formula: see text] of the alloy was found to increase with increasing hydrogen concentration. This indicates an increased polarization tendency of the Zircaloy-4 surface with a limited dissolution tendency in the presence of delta hydrides.