Effect of Ni–P alloy coating on microstructures and properties of vacuum brazed joints of SiCp/Al composites

2017 ◽  
Vol 31 (08) ◽  
pp. 1750082 ◽  
Author(s):  
Peng Wang ◽  
Zeng Gao ◽  
Dongfeng Cheng ◽  
Dongxia Xu ◽  
Jitai Niu

Compared without electroless Ni–P alloy coating on the SiCp/Al composites, the paper describes the effect of Ni–P deposited layer on the microstructure evolution, shear strength, airtightness and fracture behavior of vacuum brazed joints. Void free and compact reaction layers along the 6063Al/Ni–P deposited layer/filler metal interfaces indicated that the joints exhibit high airtightness with He-leakage less than [Formula: see text] [Formula: see text]. Energy Dispersive X-ray Spectroscopy (EDS) analysis showed that the reaction layers mainly included brittle Al–Ni and Al–Cu–Ni intermetallics, where fracture occurred in priority and the shear strength was less than 90 MPa. However, without Ni–P alloy coating, sound joints with high shear strength of 100.1 MPa but low airtightness with He-leakage higher than [Formula: see text] were also obtained at 590[Formula: see text]C for soaking time of 30 min. In this case, a few holes that occurred along the filler metal/SiC particle interface significantly decreased the compactness of the joints. Therefore, according to the requirements in practical applications, suitable choice was provided in this research.

2014 ◽  
Vol 7 (2) ◽  
pp. 103-144
Author(s):  
Omar Saad Salih

Furnace brazing was carried out to produce joints between two different materials, Oxygen Free High Conductivity Copper [OFHC] type ISO C10300 and silicon steel (electric steel) type ASTM 36F145 by using two groups of filler metals were selected in this research, silver group type DIN L-Ag20Cd and copper group type AWS BCuP-1 with using flux type AWS FB3-A to remove oxide and protect the welding joint.The brazing temperature for both filler was 790°C and 940°C respectively above liquidus temperature of them, then soaking at different time (10, 20,30,40,50, and 60min.) for each filler metal. The microstructures of cross section area of joints were revealed in optical microscope shows presence of different reaction in the brazed area.The maximum double shear strength of dissimilar brazed joints was 47MPa by using filler metal AWS BCuP-1 at 30min. soaking time, while using filler metal DIN L-Ag20Cd give rice in double shear strength to 98MPa at 30min. soaking time due to better coalescence of the mating surfaces .The occurrence of solid solution and different types of intermetallic compounds such as Cu5Si, Fe3Zn10, FeZn10, Cu5Zn6, CuZn, CdCu2, Cd3Cd4, Cd3Cu, Cu3P,and α-Fe that is responsible for joint strength has been detected by X-ray diffraction inspection.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 526
Author(s):  
Yuzhen Lei ◽  
Hong Bian ◽  
Wei Fu ◽  
Xiaoguo Song ◽  
Jicai Feng ◽  
...  

Titanium and zirconia (ZrO2) ceramics are widely used in biomedical fields. This study aims to achieve reliable brazed joints of titanium/ZrO2 using biocompatible Au filler for implantable medical products. The effects of brazing temperature and holding time on the interfacial microstructures and mechanical properties of titanium/Au/ZrO2 joints were fully investigated by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results indicated that the typical interfacial microstructure of the titanium/Au/ZrO2 joint was titanium/Ti3Au layer/TiAu layer/TiAu2 layer/TiAu4 layer/TiO layer/ZrO2 ceramic. With an increasing brazing temperature or holding time, the thickness of the Ti3Au + TiAu + TiAu2 layer increased gradually. The growth of the TiO layer was observed, which promoted metallurgical bonding between the filler metal and ZrO2 ceramic. The optimal shear strength of ~35.0 MPa was obtained at 1150 °C for 10 min. SEM characterization revealed that cracks initiated and propagated along the interface of TiAu2 and TiAu4 reaction layers.


2011 ◽  
Vol 306-307 ◽  
pp. 901-906 ◽  
Author(s):  
Huan Ming Chen ◽  
Ya Hong Gao ◽  
Qiong Lv ◽  
Dong Yang ◽  
Xin Xin Lin

The Ni-P-W/nano-Al2O3composite coatings were deposited on the surface of sintered NdFeB permanent magnet by electroless plating method. The morphology and the phases of Ni-P-W/nano-Al2O3composite coatings were investigated using scanning electron microscopy and X-ray diffraction respectively. The hardness and the corrosion resistance of the composite coatings were also tested. The results indicated that the composite coatings morphology appears closely nodules morphology, and the microhardness increases with increasing incorporation of Al2O3ratio. Compared with NdFeB magnet and Ni-P-W alloy coatings, the corrosion resistance of the composite coatings was superior to that of the NdFeB magnet and the alloy coating obviously.


2011 ◽  
Vol 291-294 ◽  
pp. 910-914
Author(s):  
Yang Zhang ◽  
Cha Qin ◽  
Hao Zhu

The ultrasonically brazing of 55 vol.% SiCp/A356 composites in air has been investigated. When the ultrasonic vibration is applied for 0.5s, the oxide layer is still continuous at most places between the filler metal and the composites. The shear strength is only ~30% of that of the base composites. As the ultrasonic action time increases, the oxide film sufficiently disappears in the bond region, and the wetted area between the filler metal and SiC particles increases gradually. As a consequence of this, the shear strength of bonds also increases with the ultrasonically acting time. The maximum value of the shear strength of the bonds reaches 165.5MPa when the ultrasonic acting time increases to 5s, which is similar to the shear strength of the base composites.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 198 ◽  
Author(s):  
Peng Xue ◽  
Yang Zou ◽  
Peng He ◽  
Yinyin Pei ◽  
Huawei Sun ◽  
...  

The microstructure and properties of a Cu/304 stainless steel dissimilar metal joint brazed with a low silver Ag16.5CuZnSn-xGa-yCe braze filler after aging treatment were investigated. The results indicated that the addition of Ce could reduce the intergranular penetration depth of the filler metal into the stainless steel during the aging process. The minimum penetration depth in the Ag16.5CuZnSn-0.15Ce brazed joint was decreased by 48.8% compared with the Ag16.5CuZnSn brazed joint. Moreover, the shear strength of the brazed joint decreased with aging time while the shear strength of the AgCuZnSn-xGa-yCe joint was still obviously higher than the Ag16.5CuZnSn joint after a 600 h aging treatment. The fracture type of the Ag16.5CuZnSn-xGa-yCe brazed joints before aging begins ductile and turns slightly brittle during the aging process. Compared to all the results, the Ag16.5CuZnSn-2Ga-0.15Ce brazed joints show the best performance and could satisfy the requirements for cost reduction and long-term use.


2005 ◽  
Vol 297-300 ◽  
pp. 2441-2446 ◽  
Author(s):  
Shi Yao Qu ◽  
Zeng Da Zou ◽  
Xin Hong Wang

Shear strength and fracture behavior of Al2O3 matrix ceramic composite brazed joints to carbon steel with Ag-Cu-Ti brazing alloy in flow argon have been studied by means of SEM, EDX and all-purpose testing machine. Results have shown that there is a close relationship between the shear strength and the fracture form of brazed joints. The fracture occurring completely in the composite near the composite/filler metal interface corresponds to the low strength of a joint, and the strength of the joint fractured partially in the composite usually increases with decreasing the proportion of the composite on the fracture surface in the steel side. When the fracture occurs in the reaction layer between the composite and the filler metal, the closer the fractured position comes to the composite/reaction layer interface, the higher the joint strength. The maximum shear strength is obtained when the fracture occurs fully at the interface.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 896 ◽  
Author(s):  
Duo Dong ◽  
Dongdong Zhu ◽  
Ye Wang ◽  
Gang Wang ◽  
Peng Wu ◽  
...  

Vacuum brazing of TiAl intermetallic alloy to Si3N4 ceramics was performed using Ag-28Cu (wt.%) filler alloy. The brazing joints obtained at different brazing temperatures were studied in this work. The microstructure and the shear strength were analyzed in detail. The results show that the brazed joints could be divided into three regions: AlCu2Ti reaction layer near the Ti-48Al-2Cr-2Nb alloy, a typical Ag-Cu eutectic structure and a thin continuous TiN + Ti5Si3 reaction layer near the Si3N4 ceramics. The microstructure varied as the brazing temperature was increased from 1153 K/15 min to 1193 K/15 min. The shear strength of the joints first increased as the brazing temperature increased from 1153 K to 1173 K, and then decreased. The maximum shear strength reached 105.5 MPa at 1173 K/15 min and the mechanism was discussed.


2012 ◽  
Vol 557-559 ◽  
pp. 1772-1776
Author(s):  
Jian Chao Wang ◽  
Shu Hai Wang ◽  
Guang Ye ◽  
Bo Zhai

A new basic solution for eletroless Ni-B alloy plating from DMF was studied. The effects of composition and operating conditions on the rate of deposition of Ni-B alloy have also been discussed. The alloy component was analyzed by EDS and Inductively Coupled Plasma (ICP). The plating rate is determined by electronic balance. And structures of the plating coatings were investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD).The optimum composition and operating conditions for abstaining satisfied Ni-B alloy coating are provided.


2013 ◽  
Vol 20 (3) ◽  
pp. 245-253 ◽  
Author(s):  
İsmail Yildiz ◽  
Ayhan Erol ◽  
Ahmet Yönetken

AbstractPowder metallurgy is a progressive branch of engineering that enables engineers to fabricate difficult-to-make parts and materials that are used in many industrial areas. Joining this class of materials is a difficult task due to their intrinsic limitations, such as porosity and thermal properties. In this study, varying ratios of Co powder additions to Nix+Aly powder mixture were made prior to sintering at 600°C. The sintered samples were brazed in both microwave and traditional tube furnaces by placing brazing filler alloy between the sintered specimens without added weight at 950°C for 15 min. Scanning electron microscopy and X-ray diffraction techniques were employed to characterize the brazed samples and the joints. Shear strength and hardness of brazed joints were also determined.


2012 ◽  
Vol 602-604 ◽  
pp. 1641-1645
Author(s):  
Jian Xin Pan ◽  
Ru Jun Chen ◽  
Cui Lan Wu

By means of X-ray diffractometry (XRD) and transmission electron microscope (TEM), the micro-structure of 5 different Ni–B alloy coatings prepared by electroless plating with Potassium borohydride content ranging from 0.2 to approximately 1.4g/L was studied The influence of the KBH4 content in the coatings on their micro-structure was also investigated. It has been found that Ni–B alloy coatings showed amorphous sytuctue with XRD while with TEM it showed a combination of amorphous and nanocrystalline structure. It was further revealed that the amorphous structure increased with increasing KBH4 content, which means that Ni-B alloy coating prepared with increasing KBH4 content undergoes a transition process as follows: nanocrystalline → crystalline → amorphous structure. Results indicated that the micro-structure of Ni-B alloy coatings should be studied by both methods of XRD and TEM.


Sign in / Sign up

Export Citation Format

Share Document