EQUIVALENT SEQUENTIAL AND PARALLEL REDUCTIONS IN ARBITRARY BINARY PICTURES

Author(s):  
KÁLMÁN PALÁGYI

A reduction transforms a binary picture only by changing some black points to white ones, which is referred to as deletion. Sequential reductions traverse the black points of a picture, and consider a single point for possible deletion, while parallel reductions can delete a set of black points simultaneously. Two reductions are called equivalent if they produce the same result for each input picture. A deletion rule is said to be equivalent if it yields a pair of equivalent parallel and sequential reductions. This paper introduces a class of equivalent deletion rules that allows us to establish a new sufficient condition for topology-preserving parallel reductions in arbitrary binary pictures. In addition we present a method of verifying that a deletion rule given by matching templates is equivalent, a necessary and sufficient condition for order-independent deletion rules, and a sufficient criterion for order-independent and translation-invariant parallel subfield-based algorithms.

Author(s):  
Andreas Mu¨ller

Transverse-regularity is a point-wise manipulator property, ensuring that the singular set Σ is locally a smooth manifold. A generic manipulator is one which is transverse-regular in any configuration. The contribution of this paper is a necessary and sufficient condition for transverse-regularity. The condition is based on the manipulator’s joint screws and their screw products. An expression for the tangent space to Σ at transverse-regular singularities is derived. It is shown that a manipulator is non-generic if it can attain a pose where the rank of the manipulator’s screw system together with the screw products is not the maximal rank of the Jacobian. A necessary and sufficient criterion for degree-one singularities is given in terms of the mechanism’ joint screws. In particular, any non-redundant manipulator is transverse-regular in a degree-one singularity.


1. The necessary and sufficient condition that a trigonometrical series should be a Fourier series is that the integrated series should converge to an integral throughout the closed interval of periodicity, and should be the Courier series, accordingly, of an integral. Conversely, starting with the Courier series of an integral and differentiating it term by term, we obtain the Courier series of the most general type, namely, one associated with any function possessing an absolutely convergent integral. If the Courier series which is differentiated is not the Courier series of an integral, but of a function which fails to be an integral, at even a single point, the derived series will not lie a Courier series.


1997 ◽  
Vol 8 (6) ◽  
pp. 581-594 ◽  
Author(s):  
PAUL C. FIFE

Existence, uniqueness and regularity properties are established for monotone travelling waves of a convolution double-obstacle problemut =J*u−u−f (u),the solution u(x, t) being restricted to taking values in the interval [−1, 1]. When u=±1, the equation becomes an inequality. Here the kernel J of the convolution is nonnegative with unit integral and f satisfies f(−1)>0>f(1). This is an extension of the theory in Bates et al. (1997), which deals with this same equation, without the constraint, when f is bistable. Among many other things, it is found that the travelling wave profile u(x−ct) is always ±1 for sufficiently large positive or negative values of its argument, and a necessary and sufficient condition is given for it to be piecewise constant, jumping from −1 to 1 at a single point.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document