An Improved Bandgap Reference with Curvature-Compensated and High Power Supply Rejection

2016 ◽  
Vol 25 (11) ◽  
pp. 1650147 ◽  
Author(s):  
Hongbing Wu ◽  
Hongxia Liu

This paper presents a bandgap reference (BGR) with the characteristics of curvature-compensation and high power supply rejection ratio (PSRR). To achieve a better performance, the base current of BJT is injected to a small segment of resistor string to flatten the temperature variation, and a pre-regulator of the power supply is implemented to improve the PSRR. The circuits, designed in 0.18[Formula: see text][Formula: see text]m BCD technology, exhibit an average voltage of 1.212[Formula: see text]V with temperature coefficient of 2.0[Formula: see text]ppm/[Formula: see text] in the range from [Formula: see text] to 110[Formula: see text] at typical condition, and a power supply rejection ratio of [Formula: see text][Formula: see text]dB at low frequency. After 4-bit trimming, Monte Carlo simulation results show that the proposed design gets an accuracy of 0.29%, with a variation of [Formula: see text][Formula: see text]mV. The active design area is 160[Formula: see text][Formula: see text]m, and the power supply current is about 8.2[Formula: see text][Formula: see text]A.

2011 ◽  
Vol 483 ◽  
pp. 481-486 ◽  
Author(s):  
Xiao Wei Liu ◽  
Bing Jun Lv ◽  
Peng Fei Wang ◽  
Liang Yin ◽  
Na Xu

The reference is an important part in the accelerometer system. With the development of science and technology, the request of the performance of accelerometers is increasingly higher and the precision of reference directly affects the performance of accelerometers. Therefore, a reference voltage applicable to accelerometers is presented based on the analysis of basic principles of conventional bandgap reference (BGR) in this paper. A high-order curvature compensation technique, which uses a temperature dependent resistor ratio generated by a high poly resistor and a nwell resistor, effectively serves to reduce temperature coefficient of proposed reference voltage circuit and to a large extent improve its performance. To achieve a high power supply rejection ratio (PSRR) over a broad frequency range, a pre-regulator is introduced to remain the supply voltage of the core circuit of BGR relatively independent of the global supply voltage. The proposed circuitry is designed in standard 2.0μm CMOS process. The simulated result shows that the average temperature coefficient is less than 2ppm/°C in the temperature range from -40 to 120°C. The improvement on temperature coefficient (TC) is about 10 times reduction compared to the conventional approach. And the PSR at DC frequency and 1kHz achieves -107 and -71dB respectively at 9.0V supply voltage.


2019 ◽  
Vol 17 (10) ◽  
pp. 777-783
Author(s):  
Shishu Pal ◽  
Ashutosh Nandi

This paper describes a compact, low voltage and high power supply rejection ratio (PSRR) Bandgap voltage reference circuit by using subthreshold MOSFETs. The proposed reference circuit is implemented using 0.18 μm CMOS technology. The circuit simulation is performed using the Cadence Spectre and Synopsys Hspice. The circuit generates the mean output reference voltage of 164 mV and temperature coefficient of 15.5 ppm/°C when temperature is swept from –40 °C to 120 °C at power supply of 1.2 V. For better PSRR, a feed forward mechanism is used. The proposed design has only single transistor for start-up circuit. The measured settling time for output reference voltage is observed to be less than 4 μs. No filtering capacitor is used to improve the PSRR, which is –97 dB up to 1 MHz and subsequently reduces to –47.5 dB at 158 MHz.


2013 ◽  
Vol 475-476 ◽  
pp. 1679-1684
Author(s):  
Ye Chao Sun ◽  
Zhuo Lei Huang ◽  
Wei Bing Wang

A bandgap reference without passive components based on standard CMOS is proposed. Using an improved inverse-function technique without any curvature-compensated techniques, two reference voltages are got in different temperature ranges. One is 1.56V with a temperature coefficient of 9.2ppm/°C in the range [0, 14 °C at 3.3V supply voltage, and the other is 1.546V with 47ppm/°C in [-25, 15 °C at 3.3V. Its PSRR (power supply rejection ratio) is below-60dB at 10kHz, and it is quite suitable for integration in processing circuits of MEMS (micro-electro-mechanical systems) devices.


Sign in / Sign up

Export Citation Format

Share Document