Nonlinear Dynamic Analysis on Planetary Gears-Rotor System in Geared Turbofan Engines
Rotor fatigue and gear noise triggered by nonlinear vibration are the key concerns in Geared Turbofan (GTF) engine which features a new configuration by introducing planetary gears into low-pressure compressor. A nonlinear analytical model of the GTF planetary gears-rotor system is developed, where the torsional effect of rotor and pivotal parameters from gears are incorporated. The nonlinear behavior of the model can be obtained by focusing on the relative torsional vibration responses between gear and rotor. The torsional nonlinear responses are illustrated with bifurcation diagrams, the largest Lyapunov exponents (LLE), Poincaré maps, phase diagrams and spectrum waterfall. Numerical results reveal that the gears-rotor system exhibits abundant torsional nonlinear behaviors, including multiperiodic, quasi-periodic, and chaotic motions. Furthermore, the roads to chaos via quasi-periodicity, period-doubling scenario, mutation and intermittence are demonstrated. The ring gear stiffness at a low value can propel the system into chaos. The damping may complicate the motion, i.e. the system may enter chaos with increasing damping. These results provide an understanding of undesirable torsional dynamic motion for the GTF engine rotor system and therefore serve as a useful reference for engineers in designing and controlling such system.