whirling motion
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2059
Author(s):  
Nasser A. Saeed ◽  
Mohamed S. Mohamed ◽  
Sayed K. Elagan

This work aims to diagnose the crack size of a nonlinear rotating shaft system based on the qualitative change of the system oscillatory characteristics. The considered system is modeled as a two-degree-of-freedom horizontally supported nonlinear Jeffcott rotor system. The influence of the crack size on the system whirling motion for the primary, superharmonic, and subharmonic resonance cases are investigated utilizing the bifurcation diagram, Poincaré map, frequency spectrum, and whirling orbit. The obtained numerical results revealed that the cracked system whirling motion is subjected to a continuous qualitative change as the crack size increases for the superharmonic resonance case, where the system can exhibit period-1, period-2, quasi-periodic, period-3, period-doubling, chaotic, and period-2 motions, sequentially. In addition, an asymmetry is observed in the system whirling orbit due to both the shaft weight and shaft crack. Moreover, it is found that the disk eccentricity does not affect the nature of these motions. Accordingly, we illustrated a simple method to diagnose the existence of such a crack and to quantify its size via monitoring the system lateral vibrations at the superharmonic resonance. Finally, all the obtained numerical results are concluded and a comparison with already published work is included.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs ◽  
Dung L. Tran ◽  
Hari Shresth

Abstract The labyrinth seal is one of the most popular noncontact annular seals used in centrifugal compressors to improve machine efficiency by reducing the secondary flow leakage. Reducing the radial clearance Cr can effectively decrease the seal's leakage and therefore increase the machine efficiency. However, reducing Cr can also introduce undesired effects on the machine's vibration behaviors. This paper experimentally studies the impact of reducing Cr on the leakage and rotordynamic coefficients of a 16-tooth see-through labyrinth seal under wet-gas conditions. The test seal's inner diameter is 89.256 mm. Two rotors with different diameters are used to obtain two radial clearances (0.102 mm and 0.178 mm). Tests are carried out at a supply pressure of 62 bars, three speeds from 10 krpm to 20 krpm, three pressure ratios from 0.21 to 0.46, and six inlet liquid volume fractions (LVFs) from zero to 15%. The test fluid is a mixture comprised of air and silicon oil. Test results show that, for all pure-air and mainly air conditions, decreasing Cr decreases (as expected) the test seal's leakage mass flowrate. For all test cases, direct dynamic stiffness KΩ is negative, producing a negative centering force on the associated rotor. For inlet LVF ≤ 8%, the effects of decreasing Cr on KΩ are negligible. When inlet LVF = 12% and 15%, decreasing Cr increases KΩ (decreases the magnitude). In other words, when inlet LVF = 12% and 15%, decreasing Cr reduces the test seal's negative centering force on the rotor, and would increase the critical speeds of the rotor. The value of the effective damping Ceff near 0.5ω represents the seal's capability to suppress the rotor's potential whirling motion at about 0.5ω. For all pure-air and mainly air conditions, decreasing Cr generally increases the Ceff value near 0.5ω; i.e., decreasing Cr improves the test seal's stabilizing capability against the rotor's potential whirling motion at about 0.5ω.


Author(s):  
Min Zhang ◽  
Dara W. Childs ◽  
Dung L. Tran ◽  
Hari Shrestha

Abstract The labyrinth seal is one of the most popular non-contact annular seals used in centrifugal compressors to improve machine efficiency by reducing the secondary flow leakage. Reducing the radial clearance Cr can effectively decrease the seal’s leakage and therefore increase the machine efficiency. However, reducing Cr can also introduce undesired effects on the machine’s vibration behaviors. This paper experimentally studies the impact of reducing Cr on the leakage and rotordynamic coefficients of a 16-tooth see-through labyrinth seal under wet-gas conditions. The test seal’s inner diameter is 89.256 mm. Two rotors with different diameters are used to obtain two radial clearances (0.102 mm and 0.178 mm). Tests are carried out at a supply pressure of 62 bars, three speeds from 10krpm to 20 krpm, three pressure ratios from 0.21 to 0.46, and six inlet liquid volume fractions (LVFs) from zero to 15%. The test fluid is a mixture comprised of air and silicon oil. Test results show that, for all pure-air and mainly-air conditions, decreasing Cr decreases (as expected) the test seal’s leakage mass flow rate. For all test cases, direct dynamic stiffness KΩ is negative, producing a negative centering force on the associated rotor. For inlet LVF ≤ 8%, the effects of decreasing Cr on KΩ are negligible. When inlet LVF = 12% and 15%, decreasing Cr increases KΩ (decreases the magnitude). In other words, when inlet LVF = 12% and 15%, decreasing Cr reduces the test seal’s negative centering force on the rotor, and would increase the critical speeds of the rotor. The value of the effective damping Ceff near 0.5ω represents the seal’s capability to suppress the rotor’s potential whirling motion at about 0.5ω. For all pure-air and mainly-air conditions, decreasing Cr generally increases the Ceff value near 0.5ω; i.e., decreasing Cr improves the test seal’s stabilizing capability against the rotor’s potential whirling motion at about 0.5ω.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Nuntaphong Koondilogpiboon ◽  
Tsuyoshi Inoue

Abstract The difference in dynamic behavior of the rotor-bearing system supported by the bearing model that considers both lateral and angular whirling motions of the journal (model A), and the model that considers only lateral whirling motion (model B) is investigated. The rotor model consists of a slender shaft, a large disk, and two small disks supported by a self-aligning rolling element bearing (REB) and an axial groove journal bearing (JB) of length-to-diameter ratio (L/D) = 0.6. Three positions of the large disk: 410, 560, and 650 mm measured from the REB, are investigated. Numerical integration of the rotor-bearing system which is modally reduced to the first forward (FWD) mode is performed at above the onset speed of instability until either a steady-state journal orbit or contact between the journal and the bearing occurs to identify the bifurcation type. Numerical results using model A indicate subcritical bifurcation with the contact between the journal and the inboard (IB) side of the bearing in all three large disk positions, whereas those of model B indicate subcritical bifurcation when the large disk position is at 410 mm, and supercritical bifurcation is observed in the other two cases. Finally, the experiments at the same three large disk positions are performed. Subcritical bifurcation with the contact between the journal and the IB side of the bearing is observed in all large disk positions, which conforms with the calculation result of model A. Hence, model A is essential in nonlinear vibration analysis of a highly flexible rotor system.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 138859-138883
Author(s):  
Nasser A. Saeed ◽  
Emad Mahrous Awwad ◽  
Mohammed A. El-Meligy ◽  
Emad S. Abouel Nasr

Sign in / Sign up

Export Citation Format

Share Document