Global Bifurcation of Stationary Solutions for a Volume-Filling Chemotaxis Model with Logistic Growth
In this paper, we show how the global bifurcation theory for nonlinear Fredholm operators (Theorem 4.3 of [Shi & Wang, 2009]) and for compact operators (Theorem 1.3 of [Rabinowitz, 1971]) can be used in the study of the nonconstant stationary solutions for a volume-filling chemotaxis model with logistic growth under Neumann boundary conditions. Our results show that infinitely many local branches of nonconstant solutions bifurcate from the positive constant solution [Formula: see text] at [Formula: see text]. Moreover, for each [Formula: see text], we prove that each [Formula: see text] can be extended into a global curve, and the projection of the bifurcation curve [Formula: see text] onto the [Formula: see text]-axis contains [Formula: see text].