fredholm operators
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 30)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

AbstractIn this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray–Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], $$\chi $$ χ , and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], $$\sigma (\cdot ,[a,b])$$ σ ( · , [ a , b ] ) , which provides the key step for establishing the uniqueness of the degree for Fredholm maps.


2021 ◽  
Vol 41 (5) ◽  
pp. 1670-1678
Author(s):  
Ruihan Zhang ◽  
Weijuan Shi ◽  
Guoxing Ji

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2020 ◽  
Vol 201 ◽  
pp. 112019
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
H. Bin Jebreen

We develop the multiwavelet Galerkin method to solve the Volterra–Fredholm integral equations. To this end, we represent the Volterra and Fredholm operators in multiwavelet bases. Then, we reduce the problem to a linear or nonlinear system of algebraic equations. The interesting results arise in the linear type where thresholding is employed to decrease the nonzero entries of the coefficient matrix, and thus, this leads to reduction in computational efforts. The convergence analysis is investigated, and numerical experiments guarantee it. To show the applicability of the method, we compare it with other methods and it can be shown that our results are better than others.


2020 ◽  
Vol 30 (13) ◽  
pp. 2050182
Author(s):  
Yaying Dong ◽  
Shanbing Li

In this paper, we show how the global bifurcation theory for nonlinear Fredholm operators (Theorem 4.3 of [Shi & Wang, 2009]) and for compact operators (Theorem 1.3 of [Rabinowitz, 1971]) can be used in the study of the nonconstant stationary solutions for a volume-filling chemotaxis model with logistic growth under Neumann boundary conditions. Our results show that infinitely many local branches of nonconstant solutions bifurcate from the positive constant solution [Formula: see text] at [Formula: see text]. Moreover, for each [Formula: see text], we prove that each [Formula: see text] can be extended into a global curve, and the projection of the bifurcation curve [Formula: see text] onto the [Formula: see text]-axis contains [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document