FROM BOUNDARY VALUE PROBLEMS TO DIFFERENCE EQUATIONS: A METHOD OF INVESTIGATION OF CHAOTIC VIBRATIONS

1999 ◽  
Vol 09 (07) ◽  
pp. 1285-1306 ◽  
Author(s):  
E. YU. ROMANENKO ◽  
A. N. SHARKOVSKY

Among evolutionary boundary value problems for partial differential equations, there is a wide class of problems reducible to difference, differential-difference and other relevant equations. Of especial promise for investigation are problems that reduce to difference equations with continuous argument. Such problems, even in their simplest form, may exhibit solutions with extremely complicated long-time behavior to the extent of possessing evolutions that are indistinguishable from random ones when time is large. It is owing to the reduction to a difference equation followed by the employment of the properties of the one-dimensional map associated with the difference equation, that, it is in many cases possible to establish mathematical mechanisms for one or other type of dynamical behavior of solutions. The paper presents the overall picture in the study of boundary value problems reducible to difference equations (on which the authors have a direct bearing over the last ten years) and demonstrates with several simplest examples the potentialities that such a reduction opens up.

2019 ◽  
Vol 29 (07) ◽  
pp. 1387-1412 ◽  
Author(s):  
Peter Y. H. Pang ◽  
Yifu Wang

This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain [Formula: see text] ([Formula: see text]): [Formula: see text] where [Formula: see text] and [Formula: see text] are positive parameters. For any reasonably regular initial data [Formula: see text], we prove the global boundedness ([Formula: see text]-norm) of [Formula: see text] via an iterative method. Furthermore, we investigate the long-time behavior of solutions to the above system under an additional mild condition, and improve previously known results. In particular, in the one-dimensional case, we show that the solution [Formula: see text] converges to [Formula: see text] with an explicit exponential rate as time tends to infinity.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ruyun Ma ◽  
Chunjie Xie ◽  
Abubaker Ahmed

We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional p-Laplacian u′t|p−2u′t′+λfut=0, t∈0,1, u(0)=u(1)=0, where p∈(1,2], λ∈(0,∞) is a parameter, f∈C1([0,r),[0,∞)) for some constant r>0, f(s)>0 in (0,r), and lims→r-(r-s)p-1f(s)=+∞.


2019 ◽  
Vol 65 (4) ◽  
pp. 613-622
Author(s):  
E. P. Ivanova

We consider boundary-value problems for differential-difference equations containing incommeasurable shifts of arguments in higher-order terms. We prove that in the case of finite orbits of boundary points generated by the set of shifts of the difference operator, the original problem is reduced to the boundary-value problem for differential equation with nonlocal boundary conditions.


2011 ◽  
Vol 27 (2) ◽  
pp. 239-248
Author(s):  
YUJI LIU ◽  

This paper is concerned with the integral type boundary value problems of the second order singular differential equations with one-dimensional p-Laplacian. Sufficient conditions to guarantee the existence of at least three positive solutions are established. An example is presented to illustrate the main results. The emphasis is put on the one-dimensional p-Laplacian term [ρ(t)Φ(x 0 (t))]0 involved with the function ρ, which makes the solutions un-concave. Furthermore, f, g, h and ρ may be singular at t = 0 or t = 1.


Sign in / Sign up

Export Citation Format

Share Document