COLOR MAP OF LYAPUNOV EXPONENTS OF INVARIANT SETS

1999 ◽  
Vol 09 (07) ◽  
pp. 1459-1463 ◽  
Author(s):  
MARCO MONTI ◽  
WILLIAM B. PARDO ◽  
JONATHAN A. WALKENSTEIN ◽  
EPAMINONDAS ROSA ◽  
CELSO GREBOGI

The largest Lyapunov exponent of the Lorenz system is used as a measure of chaotic behavior to construct parameter space color maps. Each color in these maps corresponds to different values of the Lyapunov exponent and indicates, in parameter space, the locations of different levels of chaos for the Lorenz system. Practical applications of these maps include moving in parameter space from place to place without leaving a region of specific behavior of the system.

2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450131 ◽  
Author(s):  
Chunbiao Li ◽  
Julien Clinton Sprott

In this paper, the dynamical behavior of the Lorenz system is examined in a previously unexplored region of parameter space, in particular, where r is zero and b is negative. For certain values of the parameters, the classic butterfly attractor is broken into a symmetric pair of strange attractors, or it shrinks into a small attractor basin intermingled with the basins of a symmetric pair of limit cycles, which means that the system is bistable or tristable under certain conditions. Although the resulting system is no longer a plausible model of fluid convection, it may have application to other physical systems.


2010 ◽  
Vol 374 (11-12) ◽  
pp. 1315-1319 ◽  
Author(s):  
Takahiro Yajima ◽  
Hiroyuki Nagahama

2017 ◽  
Vol 10 (5) ◽  
pp. 372-378 ◽  
Author(s):  
Xiao-Wei HUAI ◽  
Jian-Ping LI ◽  
Rui-Qiang DING ◽  
Jie FENG ◽  
De-Qiang LIU

In most studies on dynamics of time series financial data, the absence of chaotic behavior is generally observed. However, this theory is not yet established in the dynamics of foreign exchange rates. Conflicting claims of presence and absence of chaos in foreign exchange rates open door for further investigation considering various deterministic factors. This work examines the dynamics of exchange rate of the Philippine Peso against selected foreign currencies. Time series data were collected for eight (8) of Philippine’s top trading partners as categorized according to economic condition. The data obtained with permission from the Central Bank of the Philippines covered the years 2013 to 2017. Data sets were plotted revealing non-linear movement of Philippine exchange rates against time. The foreign exchange rate time series obtained per currency were examined for chaotic behavior by computing the Largest Lyapunov Exponents (LLE). A positive Lyapunov exponent is an indication of sensitivity dependence, i.e, a chaotic dynamics; whereas, a negative Lyapunov exponent indicates otherwise. Computed LLE’s varied per currency but all were found to be negative. Therefore, using the Largest Lyapunov Exponent Test (LLE), analysis of the time series of Philippine foreign exchange rates shows little evidence of chaotic patterns.


1998 ◽  
Vol 122 (1) ◽  
pp. 240-245 ◽  
Author(s):  
M. Basso ◽  
L. Giarre´ ◽  
M. Dahleh ◽  
I. Mezic´

In this paper we model the microcantilever-sample interaction in an atomic force microscope (AFM) via a Lennard-Jones potential and consider the dynamical behavior of a harmonically forced system. Using nonlinear analysis techniques on attracting limit sets, we numerically verify the presence of chaotic invariant sets. The chaotic behavior appears to be generated via a cascade of period doubling, whose occurrence has been studied as a function of the system parameters. As expected, the chaotic attractors are obtained for values of parameters predicted by Melnikov theory. Moreover, the numerical analysis can be fruitfully employed to analyze the region of the parameter space where no theoretical information on the presence of a chaotic invariant set is available. In addition to explaining the experimentally observed chaotic behavior, this analysis can be useful in finding a controller that stabilizes the system on a nonchaotic trajectory. The analysis can also be used to change the AFM operating conditions to a region of the parameter space where regular motion is ensured. [S0022-0434(00)01401-5]


2019 ◽  
Vol 24 (2) ◽  
pp. 50 ◽  
Author(s):  
Rodrigo Simile Baroni ◽  
Ricardo Egydio de Carvalho ◽  
Bruno Castaldi ◽  
Bruno Furlanetto

Billiards exhibit rich dynamical behavior, typical of Hamiltonian systems. In the present study, we investigate the classical dynamics of particles in the eccentric annular billiard, which has a mixed phase space, in the limit that the scatterer is point-like. We call this configuration the near singular, in which a single initial condition (IC) densely fills the phase space with straight lines. To characterize the orbits, two techniques were applied: (i) Finite-time Lyapunov exponent (FTLE) and (ii) time recurrence. The largest Lyapunov exponent λ was calculated using the FTLE method, which for conservative systems, λ > 0 indicates chaotic behavior and λ = 0 indicates regularity. The recurrence of orbits in the phase space was investigated through recurrence plots. Chaotic orbits show many different return times and, according to Slater’s theorem, quasi-periodic orbits have at most three different return times, the bigger one being the sum of the other two. We show that during the transition to the near singular limit, a typical orbit in the billiard exhibits a sharp drop in the value of λ, suggesting some change in the dynamical behavior of the system. Many different recurrence times are observed in the near singular limit, also indicating that the orbit is chaotic. The patterns in the recurrence plot reveal that this chaotic orbit is composed of quasi-periodic segments. We also conclude that reducing the magnitude of the nonlinear part of the system did not prevent chaotic behavior.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450086 ◽  
Author(s):  
J. C. Sprott ◽  
Xiong Wang ◽  
Guanrong Chen

This letter reports an interesting finding that the parametric Lorenz system and the parametric Chen system "shake hands" at a particular point of their common parameter space, as the time variable t → +∞ in the Lorenz system while t → -∞ in the Chen system. This helps better clarify and understand the relationship between these two closely related but topologically nonequivalent chaotic systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ping Zhou ◽  
Kun Huang ◽  
Chun-de Yang

A new 4D fractional-order chaotic system, which has an infinite number of equilibrium points, is introduced. There is no-chaotic behavior for its corresponded integer-order system. We obtain that the largest Lyapunov exponent of this 4D fractional-order chaotic system is 0.8939 and yield the chaotic attractor. A chaotic synchronization scheme is presented for this 4D fractional-order chaotic system. Numerical simulations is verified the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document