scholarly journals Decompositions of algebras and post-associative algebra structures

2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.

2010 ◽  
Vol 20 (07) ◽  
pp. 875-900 ◽  
Author(s):  
L. A. BOKUT ◽  
YUQUN CHEN ◽  
QIUHUI MO

In this paper, by using Gröbner–Shirshov bases, we show that in the following classes, each (respectively, countably generated) algebra can be embedded into a simple (respectively, two-generated) algebra: associative differential algebras, associative Ω-algebras, associative λ-differential algebras. We show that in the following classes, each countably generated algebra over a countable field k can be embedded into a simple two-generated algebra: associative algebras, semigroups, Lie algebras, associative differential algebras, associative Ω-algebras, associative λ-differential algebras. We give another proofs of the well known theorems: each countably generated group (respectively, associative algebra, semigroup, Lie algebra) can be embedded into a two-generated group (respectively, associative algebra, semigroup, Lie algebra).


2021 ◽  
Vol 12 (1) ◽  
pp. 59-69
Author(s):  
Henti Henti ◽  
Edi Kurniadi ◽  
Ema Carnia

In this paper, we study the quasi-associative algebra property for the real Frobenius  Lie algebra  of dimension 18. The work aims  to prove that  is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of  and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that  has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on   is still an open problem to be investigated. Our result can motivate to solve this problem.  


Author(s):  
Adel Alahmadi ◽  
Fawziah Alharthi

Let [Formula: see text] be a finitely generated associative algebra over a field [Formula: see text] of characteristic [Formula: see text] and let [Formula: see text] be its associated Lie algebra. In this paper, we investigate relations between the growth functions of [Formula: see text] and the Lie algebra [Formula: see text]. We prove that if A is generated by a finite collection of nilpotent elements, then the growth functions are asymptotically equivalent.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2002 ◽  
Vol 01 (04) ◽  
pp. 413-424 ◽  
Author(s):  
V. D. LYAKHOVSKY ◽  
M. E. SAMSONOV

The twist deformations for simple Lie algebras [Formula: see text] whose twisting elements ℱ are known explicitly are usually defined on the carrier subspace injected in the Borel subalgebra [Formula: see text]. We consider the case where the carrier of the twist intersects nontrivially with both [Formula: see text] and [Formula: see text]. The main element of the new deformation is the parabolic twist ℱ℘ whose carrier is the minimal parabolic subalgebra of simple Lie algebra [Formula: see text]. It has the structure of the algebra of two-dimensional motions, contains [Formula: see text] and intersects nontrivially with [Formula: see text]. The twist ℱ℘ is constructed as a composition of the extended jordanian twist [Formula: see text] and the factor [Formula: see text]. The latter can be considered as a special deformed version of the jordanian twist. The twisted costructure is found for [Formula: see text] and the corresponding universal ℛ-matrix is presented. The parabolic twist can be composed with certain types of chains of extended jordanian twists for algebras A2(n-1). The chains enlarged by the parabolic factor ℱ℘ perform the explicit quantization of the new set of classical r-matrices.


2017 ◽  
Vol 69 (02) ◽  
pp. 453-480
Author(s):  
Timothée Marquis ◽  
Karl-Hermann Neeb

Abstract The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie algebras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant. Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over simple Hilbert-Lie algebras , also called affinisations of . They possess a root space decomposition whose corresponding root system is a locally affine root system of one of the 7 families for some infinite set J. To each of these types corresponds a “minimal ” affinisation of some simple Hilbert-Lie algebra , which we call standard. In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra an explicit isomorphism from g to one of the standard affinisations of . The existence of such an isomorphism could also be derived from the classiffication of locally affine root systems, but for representation theoretic purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible with the root decompositions. We illustrate this by applying our isomorphism theorem to the study of positive energy highest weight representations of g. In subsequent work, this paper will be used to obtain a complete classification of the positive energy highest weight representations of affinisations of .


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenjuan Xie ◽  
Quanqin Jin ◽  
Wende Liu

AbstractA Hom-structure on a Lie algebra (g,[,]) is a linear map σ W g σ g which satisfies the Hom-Jacobi identity: [σ(x), [y,z]] + [σ(y), [z,x]] + [σ(z),[x,y]] = 0 for all x; y; z ∈ g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. This paper aims to determine explicitly all the Homstructures on the finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero. As a Hom-structure on a Lie algebra is not necessarily a Lie algebra homomorphism, the method developed for multiplicative Hom-structures by Jin and Li in [J. Algebra 319 (2008): 1398–1408] does not work again in our case. The critical technique used in this paper, which is completely different from that in [J. Algebra 319 (2008): 1398– 1408], is that we characterize the Hom-structures on a semi-simple Lie algebra g by introducing certain reduction methods and using the software GAP. The results not only improve the earlier ones in [J. Algebra 319 (2008): 1398– 1408], but also correct an error in the conclusion for the 3-dimensional simple Lie algebra sl2. In particular, we find an interesting fact that all the Hom-structures on sl2 constitute a 6-dimensional Jordan algebra in the usual way.


2007 ◽  
Vol 14 (03) ◽  
pp. 479-488 ◽  
Author(s):  
Seul Hee Choi ◽  
Ki-Bong Nam

A Weyl type algebra is defined in the book [4]. A Weyl type non-associative algebra [Formula: see text] and its restricted subalgebra [Formula: see text] are defined in various papers (see [1, 3, 11, 12]). Several authors find all the derivations of an associative (a Lie, a non-associative) algebra (see [1, 2, 4, 6, 11, 12]). We define the non-associative simple algebra [Formula: see text] and the semi-Lie algebra [Formula: see text], where [Formula: see text]. We prove that the algebra is simple and find all its non-associative algebra derivations.


Author(s):  
Abraham S.-T. Lue

This paper examines the relationship between extensions in a variety and general extensions in the category of associative algebras. Our associative algebras are all unitary, over some fixed commutative ring Λ with identity, but while our discussion will be restricted to this category, it is clear that obvious analogues exist for groups, Lie algebras and Jordan algebras. (We use the notion of a bimultiplication of an associative algebra. In (2), Knopfmacher gives the definition of a bimultiplication in any variety of linear algebras.)


Sign in / Sign up

Export Citation Format

Share Document