Frobenius action on Carter subgroups
Let [Formula: see text] be a finite solvable group and [Formula: see text] be a subgroup of [Formula: see text]. Suppose that there exists an [Formula: see text]-invariant Carter subgroup [Formula: see text] of [Formula: see text] such that the semidirect product [Formula: see text] is a Frobenius group with kernel [Formula: see text] and complement [Formula: see text]. We prove that the terms of the Fitting series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the Fitting series of [Formula: see text], and the Fitting height of [Formula: see text] may exceed the Fitting height of [Formula: see text] by at most one. As a corollary it is shown that for any set of primes [Formula: see text], the terms of the [Formula: see text]-series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the [Formula: see text]-series of [Formula: see text], and the [Formula: see text]-length of [Formula: see text] may exceed the [Formula: see text]-length of [Formula: see text] by at most one. These theorems generalize the main results in [E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1–11] obtained by Khukhro.