scholarly journals Frobenius action on Carter subgroups

2020 ◽  
Vol 30 (05) ◽  
pp. 1073-1080
Author(s):  
Güli̇n Ercan ◽  
İsmai̇l Ş. Güloğlu

Let [Formula: see text] be a finite solvable group and [Formula: see text] be a subgroup of [Formula: see text]. Suppose that there exists an [Formula: see text]-invariant Carter subgroup [Formula: see text] of [Formula: see text] such that the semidirect product [Formula: see text] is a Frobenius group with kernel [Formula: see text] and complement [Formula: see text]. We prove that the terms of the Fitting series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the Fitting series of [Formula: see text], and the Fitting height of [Formula: see text] may exceed the Fitting height of [Formula: see text] by at most one. As a corollary it is shown that for any set of primes [Formula: see text], the terms of the [Formula: see text]-series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the [Formula: see text]-series of [Formula: see text], and the [Formula: see text]-length of [Formula: see text] may exceed the [Formula: see text]-length of [Formula: see text] by at most one. These theorems generalize the main results in [E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1–11] obtained by Khukhro.

2010 ◽  
Vol 17 (spec01) ◽  
pp. 925-927 ◽  
Author(s):  
M. H. Jafari

Let b(G) denote the largest irreducible character degree of a finite group G. In this paper, we prove that if G is a solvable group which does not involve a section isomorphic to the wreath product of two groups of equal prime order p, and if b(G) < pn, then |G:Op(G)|p < pn.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950200
Author(s):  
Chi Zhang ◽  
Alexander N. Skiba

Let [Formula: see text] be a partition of the set [Formula: see text] of all primes and [Formula: see text] a finite group. A chief factor [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-central if the semidirect product [Formula: see text] is a [Formula: see text]-group for some [Formula: see text]. [Formula: see text] is called [Formula: see text]-nilpotent if every chief factor of [Formula: see text] is [Formula: see text]-central. We say that [Formula: see text] is semi-[Formula: see text]-nilpotent (respectively, weakly semi-[Formula: see text]-nilpotent) if the normalizer [Formula: see text] of every non-normal (respectively, every non-subnormal) [Formula: see text]-nilpotent subgroup [Formula: see text] of [Formula: see text] is [Formula: see text]-nilpotent. In this paper we determine the structure of finite semi-[Formula: see text]-nilpotent and weakly semi-[Formula: see text]-nilpotent groups.


2006 ◽  
Vol 49 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Mark L. Lewis

AbstractGiven a finite group G, we attach to the character degrees of G a graph whose vertex set is the set of primes dividing the degrees of irreducible characters of G, and with an edge between p and q if pq divides the degree of some irreducible character of G. In this paper, we describe which graphs occur when G is a solvable group of Fitting height 2.


2014 ◽  
Vol 14 (03) ◽  
pp. 1550039 ◽  
Author(s):  
Wei Meng ◽  
Jiakuan Lu

For a finite group G, let γ(G) denote the number of conjugacy classes of all non-nilpotent subgroups of G, and let π(G) denote the set of the prime divisors of |G|. In this paper, we establish lower bounds on γ(G). In fact, we show that if G is a finite solvable group, then γ(G) = 0 or γ(G) ≥ 2|π(G)|-2, and if G is non-solvable, then γ(G) ≥ |π(G)| + 1. Both lower bounds are best possible.


2016 ◽  
Vol 104 (1) ◽  
pp. 37-43
Author(s):  
MARK L. LEWIS

When $G$ is a finite solvable group, we prove that $|G|$ can be bounded by a function in the number of irreducible characters with values in fields where $\mathbb{Q}$ is extended by prime power roots of unity. This gives a character theory analog for solvable groups of a theorem of Héthelyi and Külshammer that bounds the order of a finite group in terms of the number of conjugacy classes of elements of prime power order. In particular, we obtain for solvable groups a generalization of Landau’s theorem.


2011 ◽  
Vol 54 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Gülin Ercan ◽  
İsmail Ş. Güloğlu ◽  
Öznur Mut Sağdiçoğlu

AbstractLet A be a finite group acting fixed-point freely on a finite (solvable) group G. A longstanding conjecture is that if (|G|, |A|) = 1, then the Fitting length of G is bounded by the length of the longest chain of subgroups of A. It is expected that the conjecture is true when the coprimeness condition is replaced by the assumption that A is nilpotent. We establish the conjecture without the coprimeness condition in the case where A is an abelian group whose order is a product of three odd primes and where the Sylow 2-subgroups of G are abelian.


2013 ◽  
Vol 56 (3) ◽  
pp. 873-886 ◽  
Author(s):  
Özgün Ünlü ◽  
Ergün Yalçin

AbstractWe prove that if a finite group G acts smoothly on a manifold M such that all the isotropy subgroups are abelian groups with rank ≤ k, then G acts freely and smoothly on M × $\mathbb{S}^{n_1}\$ × … × $\mathbb{S}^{n_k}$ for some positive integers n1, …, nk. We construct these actions using a recursive method, introduced in an earlier paper, that involves abstract fusion systems on finite groups. As another application of this method, we prove that every finite solvable group acts freely and smoothly on some product of spheres, with trivial action on homology.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


2014 ◽  
Vol 21 (02) ◽  
pp. 355-360
Author(s):  
Xianxiu Zhang ◽  
Guangxiang Zhang

In this article, we prove that a finite solvable group with character degree graph containing at least four vertices has Fitting height at most 4 if each derived subgraph of four vertices has total degree not more than 8. We also prove that if the vertex set ρ(G) of the character degree graph Δ(G) of a solvable group G is a disjoint union ρ(G) = π1 ∪ π2, where |πi| ≥ 2 and pi, qi∈ πi for i = 1,2, and no vertex in π1 is adjacent in Δ(G) to any vertex in π2 except for p1p2 and q1q2, then the Fitting height of G is at most 4.


Sign in / Sign up

Export Citation Format

Share Document