carter subgroup
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 30 (05) ◽  
pp. 1073-1080
Author(s):  
Güli̇n Ercan ◽  
İsmai̇l Ş. Güloğlu

Let [Formula: see text] be a finite solvable group and [Formula: see text] be a subgroup of [Formula: see text]. Suppose that there exists an [Formula: see text]-invariant Carter subgroup [Formula: see text] of [Formula: see text] such that the semidirect product [Formula: see text] is a Frobenius group with kernel [Formula: see text] and complement [Formula: see text]. We prove that the terms of the Fitting series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the Fitting series of [Formula: see text], and the Fitting height of [Formula: see text] may exceed the Fitting height of [Formula: see text] by at most one. As a corollary it is shown that for any set of primes [Formula: see text], the terms of the [Formula: see text]-series of [Formula: see text] are obtained as the intersection of [Formula: see text] with the corresponding terms of the [Formula: see text]-series of [Formula: see text], and the [Formula: see text]-length of [Formula: see text] may exceed the [Formula: see text]-length of [Formula: see text] by at most one. These theorems generalize the main results in [E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1–11] obtained by Khukhro.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750043
Author(s):  
Martino Garonzi ◽  
Dan Levy ◽  
Attila Maróti ◽  
Iulian I. Simion

We consider factorizations of a finite group [Formula: see text] into conjugate subgroups, [Formula: see text] for [Formula: see text] and [Formula: see text], where [Formula: see text] is nilpotent or solvable. We derive an upper bound on the minimal length of a solvable conjugate factorization of a general finite group which, for a large class of groups, is linear in the non-solvable length of [Formula: see text]. We also show that every solvable group [Formula: see text] is a product of at most [Formula: see text] conjugates of a Carter subgroup [Formula: see text] of [Formula: see text], where [Formula: see text] is a positive real constant. Finally, using these results we obtain an upper bound on the minimal length of a nilpotent conjugate factorization of a general finite group.


2006 ◽  
Vol 71 (2) ◽  
pp. 599-610 ◽  
Author(s):  
Eric Jaligot

AbstractWe prove conjugacy and generic disjointness of generous Carter subgroups in groups of finite Morley rank. We elaborate on groups with a generous Carter subgroup and on a minimal counterexample to the Genericity Conjecture.


2004 ◽  
Vol 69 (1) ◽  
pp. 23-33
Author(s):  
Olivier Frécon

RésuméA Carter subgroup is a self-normalizing locally nilpotent subgroup. For studying these subgroups in groups of finite Morley rank, we introduce the new notion of a locally closed subgroup. We show that every solvable group of finite Morley rank has a unique conjugacy class of Carter subgroups.


Author(s):  
T. O. Hawkes

Let G be a finite soluble group. In (1) Alperin proves that two system normalizers of G contained in the same Carter subgroup C of G are conjugate in C. In recent unpublished work G.A.Chambers of the University of Wisconsin has proved that, if is a saturated formation, the -normalizers of an A-group are pronormal subgruops; hence, in particular, that two -normalizers contained in an -projector E of an A-group are conjugate in E. In this note we describe an example which shows that in Alperin's theorem the class of nilpotent groups cannot in general be replaced by an arbitary saturated formation without some restriction on the class of soluble groups under consideration. we provePROPOSITION. There exists a saturated formationand a group G which has two-normalizers E1and E2contained in an-projector F of G such that E1and E2are not conjugate in F.


1969 ◽  
Vol 109 (4) ◽  
pp. 288-310 ◽  
Author(s):  
Jack Shamash

Sign in / Sign up

Export Citation Format

Share Document