scholarly journals Degree 2 transformation semigroups as continuous maps on graphs: Foundations and structure

Author(s):  
Stuart Margolis ◽  
John Rhodes

We develop the theory of transformation semigroups that have degree 2, that is, act by partial functions on a finite set such that the inverse image of points have at most two elements. We show that the graph of fibers of such an action gives a deep connection between semigroup theory and graph theory. It is known that the Krohn–Rhodes complexity of a degree 2 action is at most 2. We show that the monoid of continuous maps on a graph is the translational hull of an appropriate 0-simple semigroup. We show how group mapping semigroups can be considered as regular covers of their right letter mapping image and relate this to their graph of fibers.

1988 ◽  
Vol 30 (2) ◽  
pp. 203-211 ◽  
Author(s):  
B. Brown ◽  
P. M. Higgins

The collection of all self-maps on a non-empty set X under composition is known in algebraic semigroup theory as the full transformation semigroup on X and is written x. Its importance lies in the fact that any semigroup S can be embedded in the full transformation semigroup (where S1 is the semigroup S with identity 1 adjoined, if S does not already possess one). The proof is similar to Cayley's Theorem that a group G can be embedded in SG, the group of all bijections of G to itself. In this paper X will be a finite set of order n, which we take to be and so we shall write Tn for X.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


1995 ◽  
Vol 52 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Hong-Xun Yi

In 1976, Gross posed the question “can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?”, where Ef(Sj) stands for the inverse image of Sj under f. In this paper, we show that there exists a finite set S with 11 elements such that for any two non-constant meromorphic functions f and g the conditions Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) imply f ≡ g. As a special case this also answers the question posed by Gross.


1982 ◽  
Vol 23 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Mary Snowden ◽  
J. M. Howie

Let X be a finite set and let (X) be the full transformation semigroup on X, i.e. the set of all mappings from X into X, the semigroup operation being composition of mappings. This paper aims to characterize those elements of (X) which have square roots. An easily verifiable necessary condition, that of being quasi-square, is found in Theorem 2, and in Theorems 4 and 5 we find necessary and sufficient conditions for certain special elements of (X). The property of being compatibly amenable is shown in Theorem 7 to be equivalent for all elements of (X) to the possession of a square root.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750138
Author(s):  
Ping Zhao ◽  
Taijie You ◽  
Huabi Hu

Let [Formula: see text] and [Formula: see text] be the partial transformation and the strictly partial transformation semigroups on the finite set [Formula: see text]. It is well known that the ranks of the semigroups [Formula: see text] and [Formula: see text] are [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text], respectively. The idempotent rank, defined as the smallest number of idempotents generating set, of the semigroup [Formula: see text] has the same value as the rank. Idempotent can be seen as a special case (with [Formula: see text]) of [Formula: see text]-potent. In this paper, we determine the [Formula: see text]-potent ranks, defined as the smallest number of [Formula: see text]-potents generating set, of the semigroups [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text].


2012 ◽  
Vol 05 (03) ◽  
pp. 1250035 ◽  
Author(s):  
Huisheng Pei ◽  
Weina Deng

Let (X, ≤) be a totally ordered finite set, [Formula: see text] be the full transformation semigroup on X and E be an arbitrary equivalence on X. We consider a subsemigroup of [Formula: see text] defined by [Formula: see text] and call it the E-order-preserving transformation semigroup on X. In this paper, we endow EOPX with the so-called natural order ≤ and discuss when two elements in EOPX are related under this order, then determine those elements of EOPX which are compatible with ≤. Also, the maximal (minimal) elements are described.


Author(s):  
J. M. Howie

SynopsisIt was proved by Howie in 1966 that , the semigroup of all singular mappings of a finite set X into itself, is generated by its idempotents. Implicit in the method of proof, though not formally stated, is the result that if |X| = n then the n(n – 1) idempotents whose range has cardinal n – 1 form a generating set for. Here it is shown that if n ≧ 3 then a minimal set M of idempotent generators for contains ½n(n–1) members. A formula is given for the number of distinct sets M.


2001 ◽  
Vol 11 (06) ◽  
pp. 627-672 ◽  
Author(s):  
JOHN RHODES ◽  
BENJAMIN STEINBERG

Building on the now generally accepted thesis that profinite semigroups are important to the study of finite semigroups, this paper proposes to apply various of the techniques, already used in studying algebraic semigroups, to profinite semigroups. The goal in mind is to understand free profinite semigroups on a finite set. To do this we define profinite varieties. We then introduce expansions of profinite semigroups, giving examples of several classes of such expansions. These expansions will then be useful in studying various structural properties of relatively free profinite semigroups, since these semigroups will be fixed points of certain expansions. This study also requires a look at profinite categories, semigroupoids, and Cayley graphs, all of which we handle in turn. We also study the structure of the minimal ideal of relatively free profinite semigroups showing, in particular, that the minimal ideal of the free profinite semigroup on a finite set with more than two generators is not a relatively free profinite completely simple semigroup, as well as some generalizations to related pseudovarieties.


1995 ◽  
Vol 60 (4) ◽  
pp. 1087-1114 ◽  
Author(s):  
B. A. Davey ◽  
M. Haviar ◽  
H. A. Priestley

AbstractBoth syntactic and semantic solutions are given for the entailment problem of duality theory. The test algebra theorem provides both a syntactic solution to the entailment problem in terms of primitive positive formula and a new derivation of the corresponding result in clone theory, viz. the syntactic description of Inv(Pol(R)) for a given set R of unitary relations on a finite set. The semantic solution to the entailment problem follows from the syntactic one, or can be given in the form of an algorithm. It shows, in the special case of a purely relational type, that duality-theoretic entailment is describable in terms of five constructs, namely trivial relations, intersection, repetition removal, product, and retractive projection. All except the last are concrete, in the sense that they are described by a quantifier-free formula. It is proved that if the finite algebra M generates a congruence-distributive variety and all subalgebras of M are subdirectly irreducible, then concrete constructs suffice to describe entailment. The concept of entailment appropriate to strong dualities is also introduced, and described in terms of coordinate projections, restriction of domains, and composition of partial functions.


2004 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Dragos Cvetkovic ◽  
Pierre Hansen ◽  
Vera Kovacevic-Vujcic

The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions.


Sign in / Sign up

Export Citation Format

Share Document