Statistics of subgroups of the modular group
We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].