Greenberg's Theorem for Quasiconvex Subgroups of Word Hyperbolic Groups

1996 ◽  
Vol 48 (6) ◽  
pp. 1224-1244 ◽  
Author(s):  
Ilya Kapovich ◽  
Hamish Short

AbstractAnalogues of a theorem of Greenberg about finitely generated subgroups of free groups are proved for quasiconvex subgroups of word hyperbolic groups. It is shown that a quasiconvex subgroup of a word hyperbolic group is a finite index subgroup of only finitely many other subgroups.

2018 ◽  
Vol 68 (2) ◽  
pp. 353-360
Author(s):  
Mark Shusterman

Abstract We show that given a finitely generated LERF group G with positive rank gradient, and finitely generated subgroups A, B ≤ G of infinite index, one can find a finite index subgroup B0 of B such that [G : 〈A ∪ B0〉] = ∞. This generalizes a theorem of Olshanskii on free groups. We conclude that a finite product of finitely generated subgroups of infinite index does not cover G. We construct a transitive virtually faithful action of G such that the orbits of finitely generated subgroups of infinite index are finite. Some of the results extend to profinite groups with positive rank gradient.


1997 ◽  
Vol 40 (3) ◽  
pp. 330-340 ◽  
Author(s):  
Ilya Kapovich

AbstractWe show that if A is a torsion-free word hyperbolic group which belongs to class (Q), that is all finitely generated subgroups of A are quasiconvex in A, then any maximal cyclic subgroup U of A is a Burns subgroup of A. This, in particular, implies that if B is a Howson group (that is the intersection of any two finitely generated subgroups is finitely generated) then A *UB, ⧼A, t | Ut = V⧽ are also Howson groups. Finitely generated free groups, fundamental groups of closed hyperbolic surfaces and some interesting 3-manifold groups are known to belong to class (Q) and our theorem applies to them. We also describe a large class of word hyperbolic groups which are not Howson.


2017 ◽  
Vol 27 (03) ◽  
pp. 299-314
Author(s):  
Oleg Bogopolski ◽  
Kai-Uwe Bux

Suppose that a finitely generated group [Formula: see text] is hyperbolic relative to a collection of subgroups [Formula: see text]. Let [Formula: see text] be subgroups of [Formula: see text] such that [Formula: see text] is relatively quasiconvex with respect to [Formula: see text] and [Formula: see text] is not parabolic. Suppose that [Formula: see text] is elementwise conjugate into [Formula: see text]. Then there exists a finite index subgroup of [Formula: see text] which is conjugate into [Formula: see text]. The minimal length of the conjugator can be estimated. In the case, where [Formula: see text] is a limit group, it is sufficient to assume only that [Formula: see text] is a finitely generated and [Formula: see text] is an arbitrary subgroup of [Formula: see text].


Author(s):  
Frédérique Bassino ◽  
Cyril Nicaud ◽  
Pascal Weil

We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].


Author(s):  
Ashot Minasyan

Abstract If $G$ is a group, a virtual retract of $G$ is a subgroup, which is a retract of a finite index subgroup. Most of the paper focuses on two group properties: property (LR), that all finitely generated subgroups are virtual retracts; and property (VRC), that all cyclic subgroups are virtual retracts. We study the permanence of these properties under commensurability, amalgams over retracts, graph products, and wreath products. In particular, we show that (VRC) is stable under passing to finite index overgroups, while (LR) is not. The question whether all finitely generated virtually free groups satisfy (LR) motivates the remaining part of the paper, studying virtual free factors of such groups. We give a simple criterion characterizing when a finitely generated subgroup of a virtually free group is a free factor of a finite index subgroup. We apply this criterion to settle a conjecture of Brunner and Burns.


2011 ◽  
Vol 21 (04) ◽  
pp. 547-574 ◽  
Author(s):  
J. O. BUTTON ◽  
A. THILLAISUNDARAM

We use Schlage-Puchta's concept of p-deficiency and Lackenby's property of p-largeness to show that a group having a finite presentation with p-deficiency greater than 1 is large, which implies that Schlage-Puchta's infinite finitely generated p-groups are not finitely presented. We also show that for all primes p at least 7, any group having a presentation of p-deficiency greater than 1 is Golod–Shafarevich, and has a finite index subgroup which is Golod–Shafarevich for the remaining primes. We also generalize a result of Grigorchuk on Coxeter groups to odd primes.


2011 ◽  
Vol 21 (01n02) ◽  
pp. 235-256 ◽  
Author(s):  
SANG-HYUN KIM

Gordon and Wilton recently proved that the double D of a free group F amalgamated along a cyclic subgroup C of F contains a surface group if a generator w of C satisfies a certain 3-manifold theoretic condition, called virtually geometricity. Wilton and the author defined the polygonality of w which also guarantees the existence of a surface group in D. In this paper, virtual geometricity is shown to imply polygonality up to descending to a finite-index subgroup of F. That the converse does not hold will follow from an example formerly considered by Manning.


2019 ◽  
pp. 1-19
Author(s):  
STEFAN FRIEDL ◽  
STEFANO VIDUSSI

This paper stems from the observation (arising from work of Delzant) that “most” Kähler groups $G$ virtually algebraically fiber, that is, admit a finite index subgroup that maps onto $\mathbb{Z}$ with finitely generated kernel. For the remaining ones, the Albanese dimension of all finite index subgroups is at most one, that is, they have virtual Albanese dimension $va(G)\leqslant 1$ . We show that the existence of algebraic fibrations has implications in the study of coherence and higher BNSR invariants of the fundamental group of aspherical Kähler surfaces. The class of Kähler groups with $va(G)=1$ includes virtual surface groups. Further examples exist; nonetheless, they exhibit a strong relation with surface groups. In fact, we show that the Green–Lazarsfeld sets of groups with $va(G)=1$ (virtually) coincide with those of surface groups, and furthermore that the only virtually RFRS groups with $va(G)=1$ are virtually surface groups.


1997 ◽  
Vol 07 (06) ◽  
pp. 771-811 ◽  
Author(s):  
Ilya Kapovich

We obtain a criterion for quasiconvexity of a subgroup of an amalgamated free product of two word hyperbolic groups along a virtually cyclic subgroup. The result provides a method of constructing new word hyperbolic group in class (Q), that is such that all their finitely generated subgroups are quasiconvex. It is known that free groups, hyperbolic surface groups and most 3-dimensional Kleinian groups have property (Q). We also give some applications of our results to one-relator groups and exponential groups.


2007 ◽  
Vol 143 (6) ◽  
pp. 1613-1622 ◽  
Author(s):  
Martin Bridson ◽  
Aimo Hinkkanen ◽  
Gaven Martin

AbstractAn extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature ($n\neq 4$), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.


Sign in / Sign up

Export Citation Format

Share Document