scholarly journals FORMATION OF DARK MATTER HALOES IN A HOMOGENEOUS DARK ENERGY UNIVERSE

2010 ◽  
Vol 19 (08n10) ◽  
pp. 1397-1403
Author(s):  
L. MARASSI

Several independent cosmological tests have shown evidences that the energy density of the universe is dominated by a dark energy component, which causes the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press–Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (power–law) mass function (where we apply a non-extensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω = -0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω parameter is very sensible to modifications in the PL free parameter, q, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.

2020 ◽  
Vol 35 (28) ◽  
pp. 2050175
Author(s):  
Sayani Maity ◽  
Mahasweta Biswas ◽  
Ujjal Debnath

This work deals with two fluid system in the framework of generalized Rastall gravity theory. One component represents dark energy whereas the other is dark matter. For the dark energy component, entropy corrected holographic and entropy corrected new agegraphic dark energy models in power-law and logarithmic versions are taken into account. For this study, we assume two classes of scale factors in which one corresponds to the future singularity and another corresponds to the initial singularity. For each of the entropy corrected dark energy models, the cosmological parameters such as Hubble parameter, deceleration parameter and equation of state parameter are calculated and their implications are established. Furthermore, to describe the stability analysis of the models, the behaviors of the squared speed of sound are analyzed graphically for each of these models. From the graphical analysis of [Formula: see text] plane, the thawing or freezing regions of all the models are determined.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1174
Author(s):  
Muhammad Umair Shahzad ◽  
Ayesha Iqbal ◽  
Abdul Jawad

In this paper, we consider the flat FRW spacetime filled with interacting dark energy and dark matter in fractal universe. We work with the three models of dark energy named as Tsallis, Renyi and Sharma–Mittal. We investigate different cosmological implications such as equation of state parameter, squared speed of sound, deceleration parameter, statefinder parameters, ω e f f - ω e f f ´ (where prime indicates the derivative with respect to ln a , and a is cosmic scale factor) plane and Om diagnostic. We explore these parameters graphically to study the evolving universe. We compare the consistency of dark energy models with the accelerating universe observational data. All three models are stable in fractal universe and support accelerated expansion of the universe.


2021 ◽  
pp. 2150154
Author(s):  
Roman Neomenko

In this paper, the cosmological perturbations of dynamical dark energy and dark matter, which interact non-gravitationally are studied. This dark energy–dark matter non-gravitational interaction is linearly dependent on the energy densities of dark components. However, in the interacting quintessence dark energy models with such type of interaction, the non-adiabatic instabilities of cosmological perturbations at radiation-dominated epoch arise. To avoid this problem, the model of dynamical dark energy was chosen as the basis. Here, the equation of state parameter of dark energy evolves in time but can be assumed constant at early epoch, so this model can be tuned in such a way that the non-adiabatic instabilities would not appear. The drawback of this cosmological model is that the energy densities of dark components can take the negative values for the certain range of interaction parameter, so the conditions for positivity of dark components densities were derived. Using obtained constraints on the model parameters, the impact of coupling parameter on modification of cosmological perturbations’ evolution is analyzed.


2009 ◽  
Vol 2009 ◽  
pp. 1-34 ◽  
Author(s):  
Salvatore Capozziello ◽  
Vincenzo Salzano

The so-called -gravity has recently attracted a lot of interest since it could be, in principle, able to explain the accelerated expansion of the Universe without adding unknown forms of dark energy/dark matter but, more simply, extending the General Relativity by generic functions of the Ricci scalar. However, apart several phenomenological models, there is no final -theory capable of fitting all the observations and addressing all the issues related to the presence of dark energy and dark matter. An alternative approach could be to “reconstruct” the form of starting from data without imposing particular classes of model. Besides, adopting the same philosophy, we take into account the possibility that galaxy cluster masses, estimated at X-ray wavelengths, could be explained, without dark matter, reconstructing the weak-field limit of analytic models. The corrected gravitational potential, obtained in this approximation, is used to estimate the total mass of a sample of 12 well-shaped clusters of galaxies.


2006 ◽  
Vol 15 (11) ◽  
pp. 1753-1935 ◽  
Author(s):  
EDMUND J. COPELAND ◽  
M. SAMI ◽  
SHINJI TSUJIKAWA

We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.


2009 ◽  
Vol 18 (12) ◽  
pp. 1851-1862 ◽  
Author(s):  
LILI XING ◽  
YUANXING GUI ◽  
CHUNYAN WANG

We consider in this paper a variable modified Chaplygin gas (VMCG) model for describing the unification of dark energy and dark matter, in which dark energy interacts with dark matter. Concretely, the evolution of the VMCG model with interaction is discussed and the statefinder diagnostic for the model is performed. By analysis, we find that the effective state parameter of dark energy can cross the phantom divide wΛ= -1 and our universe will not end up with a Big Rip in the future. Furthermore, we perform a statefinder analysis on this scenario and show the discrimination between this scenario and other dark energy models.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950171
Author(s):  
Abdulla Al Mamon ◽  
Pritikana Bhandari ◽  
Subenoy Chakraborty

In this work, we have made an attempt to investigate the dark energy possibility from the thermodynamical point of view. For this purpose, we have studied thermodynamic stability of three popular dark energy models in the framework of an expanding, homogeneous, isotropic and spatially flat FRW Universe filled with dark energy and cold dark matter. The models considered in this work are Chevallier–Polarski–Linder (CPL) model, Generalized Chaplygin Gas (GCG) model and Modified Chaplygin Gas (MCG) model. By considering the cosmic components (dark energy and cold dark matter) as perfect fluid, we have examined the constraints imposed on the total equation of state parameter ([Formula: see text]) of the dark fluid by thermodynamics and found that the phantom nature ([Formula: see text]) is not thermodynamically stable. Our investigation indicates that the dark fluid models (CPL, GCG and MCG) are thermodynamically stable under some restrictions of the parameters of each model.


Author(s):  
Carlos A. Melendres

We present a model of space that considers it to be a quantized dynamical entity which is a component of the universe along with matter and radiation. The theory is used together with  thermodynamic data  to provide a new view of cosmic  evolution  and an insight into the nature of dark energy and dark matter.           Space is made up of energy quanta. The universe started from an atomic size volume at very high  temperature and pressure near the Planck epoch. Upon expansion  and  cooling, phase transitions occurred  resulting in the formation of radiation,  fundamental particles, and matter. These  nucleate and grow into stars, galaxies, and clusters. From a phase diagram of cosmic  composition,  we  obtained  a correlation between   dark energy  and the energy of space. Using  the Friedmann  equations, data from WMAP studies of  the composition of the universe  at 3.0 x 105 (a=5.25 x 10-2) years  and at present (a=1), are well fitted by our  model with an equation of state parameter, w= -0.7.  The accelerated expansion of the universe, starting at about 7  billion years, determined by  BOSS measurements,  also correlates well with the dominance of dark energy  at 7.25 x 109 years ( a= 0.65). The expansion  can be  attributed to Quintessence with a  space force  arising from a quantum space field.  From our phase diagram, we also find a correlation suggesting  that  dark matter is a plasma form of matter similar to that  which existed during the photon epoch  immediately prior to recombination.         Our Quantum Space  Model leads to a  universe which  is  homogeneous and isotropic without the need for inflation. The thermodynamics of expansion is consistent with  BOSS data  that  show the process  to be  adiabatic and the rate of expansion  decelerating  during  the first  6  billion years after the Big Bang.  However, it  became non-adiabatic and accelerating thereafter. This  implies  an influx  of energy from a source outside the universe; it warrants consideration as a possible factor  in  the accelerated expansion of the universe.  


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdul Jawad ◽  
Abdul Malik Sultan

We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the interacting ( Γ = 3 H b 2 ρ m ) and noninteracting ( b 2 = 0 ) cases through different cosmological parameters. Accelerated expansion of the universe is justified for both models through deceleration parameter q . In this way, the equation of state parameter ω d describes the phantom and quintessence phases of the universe. However, the coincidence parameter r ~ = Ω m / Ω d shows the dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with recent observations.


Sign in / Sign up

Export Citation Format

Share Document