Kerr–Newman solution in modified teleparallel theory of gravity

2014 ◽  
Vol 24 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Gamal G. L. Nashed

A nondiagonal tetrad field having six unknown functions plus an angle Φ, which is a function of the radial coordinate r, azimuthal angle θ and the polar angle ϕ, is applied to the charged field equations of modified teleparallel theory of gravity. A special nonvacuum solution is derived with three constants of integration. The tetrad field of this solution is axially symmetric and its scalar torsion is constant. The associated metric of the derived solution gives Kerr–Newman spacetime. We have shown that the derived solution can be described by a local Lorentz transformations plus a diagonal tetrad field that is the square root of the Kerr–Newman metric. We show that any solution of general relativity (GR) can be a solution in f(T) under certain conditions.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal G. L. Nashed

A general tetrad field with sixteen unknown functions is applied to the field equations off(T)gravity theory. An analytic vacuum solution is derived with two constants of integration and an angleΦthat depends on the angle coordinateϕand radial coordinater. The tetrad field of this solution is axially symmetric and the scalar torsion vanishes. We calculate the associated metric of the derived solution and show that it represents Kerr spacetime. Finally, we show that the derived solution can be described by two local Lorentz transformations in addition to a tetrad field that is the square root of the Kerr metric. One of these local Lorentz transformations is a special case of Euler’s angles and the other represents a boost when the rotation parameter vanishes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal G. L. Nashed

A nondiagonal spherically symmetric tetrad field, involving four unknown functions of radial coordinaterplus an angleΦ, which is a generalization of the azimuthal angleϕ, is applied to the field equations of (1+4)-dimensionalf(T)gravity theory. A special vacuum solution with one constant of integration is derived. The physical meaning of this constant is shown to be related to the gravitational mass of the system and the associated metric represents Schwarzschild in (1+4)-dimension. The scalar torsion related to this solution vanishes. We put the derived solution in a matrix form and rewrite it as a product of three matrices: the first represents a rotation while the second represents an inertia and the third matrix is the diagonal square root of Schwarzschild spacetime in (1+4)-dimension.


2008 ◽  
Vol 23 (37) ◽  
pp. 3167-3177 ◽  
Author(s):  
M. SHARIF ◽  
M. JAMIL AMIR

This paper is devoted to discuss the energy–momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau–Lifshitz, Bergmann and Möller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of general relativity. It is mentioned here that Möller energy–momentum distribution is independent of the coupling constant λ. Finally, we calculate energy–momentum distribution for the Curzon metric, a special case of the above-mentioned spacetime.


2016 ◽  
Vol 25 (07) ◽  
pp. 1650087
Author(s):  
A. Behboodi ◽  
S. Akhshabi ◽  
K. Nozari

We describe the fully gauge invariant cosmological perturbation equations in teleparallel gravity by using the gauge covariant version of the Stewart lemma for obtaining the variations in tetrad perturbations. In teleparallel theory, perturbations are the result of small fluctuations in the tetrad field. The tetrad transforms as a vector in both its holonomic and anholonomic indices. As a result, in the gauge invariant formalism, physical degrees of freedom are those combinations of perturbation parameters which remain invariant under a diffeomorphism in the coordinate frame, followed by an arbitrary rotation of the local inertial (Lorentz) frame. We derive these gauge invariant perturbation potentials for scalar perturbations and present the gauge invariant field equations governing their evolution.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal G. L. Nashed

We regularized the field equations off(T)gravity theories such that the effect of local Lorentz transformation (LLT), in the case of spherical symmetry, is removed. A “general tetrad field,” with an arbitrary function of radial coordinate preserving spherical symmetry, is provided. We split that tetrad field into two matrices; the first represents a LLT, which contains an arbitrary function, and the second matrix represents a proper tetrad field which is a solution to the field equations off(T)gravitational theory (which are not invariant under LLT). This “general tetrad field” is then applied to the regularized field equations off(T). We show that the effect of the arbitrary function which is involved in the LLT invariably disappears.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. Capozziello

AbstractIn the framework of Teleparallel Gravity, we derive a charged non-vacuum solution for a physically symmetric tetrad field with two unknown functions of radial coordinate. The field equations result in a closed-form adopting particular metric potentials and a suitable anisotropy function combined with the charge. Under these circumstances, it is possible to obtain a set of configurations compatible with observed pulsars. Specifically, boundary conditions for the interior spacetime are applied to the exterior Reissner–Nordström metric to constrain the radial pressure that has to vanish through the boundary. Starting from these considerations, we are able to fix the model parameters. The pulsar $$\textit{PSR J 1614-2230}$$ PSR J 1614 - 2230 , with estimated mass $$M= 1.97 \pm 0.04\, M_{\circledcirc },$$ M = 1.97 ± 0.04 M ⊚ , and radius $$R= 9.69 \pm 0.2$$ R = 9.69 ± 0.2 km is used to test numerically the model. The stability is studied, through the causality conditions and adiabatic index, adopting the Tolman–Oppenheimer–Volkov equation. The mass–radius (M, R) relation is derived. Furthermore, the compatibility of the model with other observed pulsars is also studied. We reasonably conclude that the model can represent realistic compact objects.


2009 ◽  
Vol 24 (10) ◽  
pp. 721-724 ◽  
Author(s):  
SHAMIK BANERJEE ◽  
ASHOKE SEN

The world-volume theory of multiple M2-branes proposed recently has a free scalar field. For large vev of this scalar field the world-volume action reduces to that of multiple D2-branes with Yang–Mills coupling proportional to the vev. We suggest that the correct interpretation of this scalar field is as the radial position of the M2-brane center of mass in a cylindrical polar coordinate system. Regarding the azimuthal angle as compact we can regard this as a set of coincident D2-branes in type IIA string theory with varying dilaton and metric. We find that the effective world-volume theory on the D2-branes has Yang–Mills coupling proportional to the radial coordinate; furthermore the radial coordinate satisfies free field equations of motion. This agrees with the corresponding results derived from the M2-brane world-volume theory.


2020 ◽  
Vol 17 (13) ◽  
pp. 2050202 ◽  
Author(s):  
Shabeela Malik ◽  
Fiaz Hussain ◽  
Ghulam Shabbir

In this paper, initially we solve the Einstein field equations (EFEs) for a static spherically (SS) symmetric perfect fluid space-times in the [Formula: see text] gravity with the aid of some algebraic techniques. The extracted solutions are then utilized in order to get conformal vector fields (CVFs). It is important to mention that the adopted techniques enable us to obtain various classes of space-times with viable [Formula: see text] gravity models which already exist in the literature. Excluding all such classes, we find that there exist three cases for which the space-times admit proper CVFs, whereas in rest of the cases, CVFs become KVFs. We have also highlighted some physical implications of our obtained results.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750154
Author(s):  
Gamal G. L. Nashed ◽  
B. Elkhatib

It is well known that the field equation of teleparallel theory which is equivalent to general relativity completely agrees with the field equations of general relativity. However, teleparallel equivalent of general relativity has six redundant degrees of freedom which spoil the true physics. These extra degrees are related to the local Lorentz transformation. In this study, we give three different tetrad fields having cylindrical symmetry and depend only on the radial coordinate. One of these tetrads contains an arbitrary function, which is responsible to reproduce the other solutions, which come from local Lorentz transformation. We show by explicate calculations that this arbitrary function spoils the calculations of the conserved charges. We formulate a skew-symmetric tensor whose vanishing value puts a constraint on this arbitrary function. This constraint fixed the redundant degrees of freedom which characterize the teleparallel equivalent of general relativity.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Gamal G. L. Nashed

We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angleϕand get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsionT=TαμνSαμν. Solving this differential equation we obtain a solution to thef(T)gravity theories under certain conditions on the form off(T)and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.


Sign in / Sign up

Export Citation Format

Share Document