symmetric solution
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 32)

H-INDEX

22
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yoshiaki Kusaka

AbstractWe investigate the free-boundary problem of a steadily advancing meniscus in a circular capillary tube. The problem is described using the “interface formation model,” which was originally introduced with the aim of avoiding the singularities that arise when classical hydrodynamics is applied to problems with a moving contact line. We prove the existence of an axially symmetric solution in weighted Hölder spaces for low meniscus speeds.


Author(s):  
Jinting Liang ◽  
Jiefeng Liu ◽  
Chengming Bai

An admissible Poisson algebra (or briefly, an adm-Poisson algebra) gives an equivalent presentation with only one operation for a Poisson algebra. We establish a bialgebra theory for adm-Poisson algebras independently and systematically, including but beyond the corresponding results on Poisson bialgebras given in [27]. Explicitly, we introduce the notion of adm-Poisson bialgebras which are equivalent to Manin triples of adm-Poisson algebras as well as Poisson bialgebras. The direct correspondence between adm-Poisson bialgebras with one comultiplication and Poisson bialgebras with one cocommutative and one anti-cocommutative comultiplications generalizes and illustrates the polarization–depolarization process in the context of bialgebras. The study of a special class of adm-Poisson bialgebras which include the known coboundary Poisson bialgebras in [27] as a proper subclass in general, illustrating an advantage in terms of the presentation with one operation, leads to the introduction of adm-Poisson Yang–Baxter equation in an adm-Poisson algebra. It is an unexpected consequence that both the adm-Poisson Yang–Baxter equation and the associative Yang–Baxter equation have the same form and thus it motivates and simplifies the involved study from the study of the associative Yang–Baxter equation, which is another advantage in terms of the presentation with one operation. A skew-symmetric solution of adm-Poisson Yang–Baxter equation gives an adm-Poisson bialgebra. Finally, the notions of an [Formula: see text]-operator of an adm-Poisson algebra and a pre-adm-Poisson algebra are introduced to construct skew-symmetric solutions of adm-Poisson Yang–Baxter equation and hence adm-Poisson bialgebras. Note that a pre-adm-Poisson algebra gives an equivalent presentation for a pre-Poisson algebra introduced by Aguiar.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012134
Author(s):  
Dmitry A. Fetisov

Abstract In this paper, we discuss when the solution to the initial value problem for a linear matrix time-varying differential equation is symmetric on a given interval. By symmetry, we mean that the solution does not change when transposed. Throughout the paper, we assume that the equation has coefficients of finite order of smoothness. We demonstrate that, in order to verify whether the solution to the initial value problem is symmetric on a given interval, it can be useful to construct two matrix sequences associated to the equation. Using these sequences, we prove a sufficient condition for the solution symmetry on a given interval. Assuming that the initial value problem for a linear matrix time-varying differential equation satisfies this condition, we derive a formula for a symmetric solution to this problem.


2021 ◽  
Vol 47 (4) ◽  
pp. 1392-1401
Author(s):  
Chacha Stephen Chacha

In this paper, we propose the inversion free iterative method to find symmetric solution of thenonlinear matrix equation 𝑿 − 𝑨∗𝑿𝒒𝑨 = 𝑰 (𝒒 ≥ 𝟐), where 𝑋 is an unknown symmetricsolution, 𝐴 is a given Hermitian matrix and 𝑞 is a positive integer. The convergence of theproposed method is derived. Numerical examples demonstrate that the proposed iterative methodis quite efficient and converges well when the initial guess is sufficiently close to the approximatesolution. Keywords: Symmetric solution, nonlinear matrix equation, inversion free, iterative method


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
M. O. Katanaev

AbstractA general analytic spherically symmetric solution of the Bogomol’nyi equations is found. It depends on two constants and one arbitrary function on radius and contains the Bogomol’nyi–Prasad–Sommerfield and Singleton solutions as particular cases. Thus all spherically symmetric ’t Hooft–Polyakov monopoles with massless scalar field and minimal energy are derived.


Author(s):  
Mafoya Landry Dassoundo ◽  
Chengming Bai ◽  
Mahouton Norbert Hounkonnou

We establish a bialgebra theory for anti-flexible algebras in this paper. We introduce the notion of an anti-flexible bialgebra which is equivalent to a Manin triple of anti-flexible algebras. The study of a special case of anti-flexible bialgebras leads to the introduction of anti-flexible Yang–Baxter equation in an anti-flexible algebra which is an analogue of the classical Yang–Baxter equation in a Lie algebra or the associative Yang–Baxter equation in an associative algebra. It is unexpected consequence that both the anti-flexible Yang–Baxter equation and the associative Yang–Baxter equation have the same form. A skew-symmetric solution of anti-flexible Yang–Baxter equation gives an anti-flexible bialgebra. Finally the notions of an [Formula: see text]-operator of an anti-flexible algebra and a pre-anti-flexible algebra are introduced to construct skew-symmetric solutions of anti-flexible Yang–Baxter equation.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 249
Author(s):  
Sergey Il’ich Kruglov

New spherically symmetric solution in 4D Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics is obtained. At infinity, this solution has the Reissner–Nordström behavior of the charged black hole. The black hole thermodynamics, entropy, shadow, energy emission rate, and quasinormal modes of black holes are investigated.


Author(s):  
Fangfang Liao ◽  
Xiaoping Wang

In this paper, we prove that the following planar Schrödinger-Poisson system with zero mass -Δu+φu=f(u), x∈R^2, Δφ= 2πu^2, x∈R^2, admits a nontrivial radially symmetric solution under weaker assumptions on f by using some new analytical approaches.


Sign in / Sign up

Export Citation Format

Share Document