scholarly journals THE MASS OF THE NEUTRINOS

2010 ◽  
Vol 19 (11) ◽  
pp. 2285-2292
Author(s):  
B. G. SIDHARTH

In the theory of the Dirac equation and in the standard model, the neutrino is massless. Both these theories use Lorentz invariance. In modern approaches however, spacetime is no longer smooth, and this modifies special relativity. We show how such a modification throws up the mass of the neutrino.

2004 ◽  
Vol 13 (04) ◽  
pp. 709-716 ◽  
Author(s):  
NOSRATOLLAH JAFARI ◽  
AHMAD SHARIATI

The varying speed of light theories have been recently proposed to solve the standard model problems and anomalies in the ultra high energy cosmic rays. These theories try to formulate a new relativity with no assumptions about the constancy of the light speed. In this regard, we study two theories and want to show that these theories are not the new theories of relativity, but only re-descriptions of Einstein's special relativity.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 596 ◽  
Author(s):  
Fabian Kislat

Theories of quantum gravity suggest that Lorentz invariance, the fundamental symmetry of the Theory of Relativity, may be broken at the Planck energy scale. While any deviation from conventional Physics must be minuscule in particular at attainable energies, this hypothesis motivates ever more sensitive tests of Lorentz symmetry. In the photon sector, astrophysical observations, in particular polarization measurements, are a very powerful tool because tiny deviations from Lorentz invariance will accumulate as photons propagate over cosmological distances. The Standard-Model Extension (SME) provides a theoretical framework in the form of an effective field theory that describes low-energy effects due to a more fundamental quantum gravity theory by adding additional terms to the Standard Model Lagrangian. These terms can be ordered by the mass dimension d of the corresponding operator and lead to a wavelength, polarization, and direction dependent phase velocity of light. Lorentz invariance violation leads to an energy-dependent change of the Stokes vector as photons propagate, which manifests itself as a rotation of the polarization angle in measurements of linear polarization. In this paper, we analyze optical polarization measurements from 63 Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRBs) to search for Lorentz violating signals. We use both spectropolarimetric measurements, which directly constrain the change of linear polarization angle, as well as broadband spectrally integrated measurements. In the latter, Lorentz invariance violation manifests itself by reducing the observed net polarization fraction. Any observation of non-vanishing linear polarization thus leads to constraints on the magnitude of Lorentz violating effects. We derive the first set limits on each of the 10 individual birefringent coefficients of the minimal SME with d = 4 , with 95% confidence limits on the order of 10−34 on the dimensionless coefficients.


Author(s):  
Fabian Kislat

Theories of quantum gravity suggest that Lorentz invariance, the fundamental symmetry of the Theory of Relativity, may be broken at the Planck energy scale. While any deviation from conventional Physics must be minuscule in particular at attainable energies, this hypothesis motivates ever more sensitive tests of Lorentz symmetry. In the photon sector, astrophysical observations, in particular polarization measurements, are a very powerful tool because tiny deviations from Lorentz invariance will accumulate as photons propagate over cosmological distances. The Standard-Model Extension (SME) provides a theoretical framework in the form of an effective field theory that describes low-energy effects due to a more fundamental quantum gravity theory by adding additional terms to the Standard Model Lagrangian. These terms can be ordered by the mass dimension d of the corresponding operator and lead to a wavelength, polarization, and direction dependent phase velocity of light. In this paper, we analyze optical polarization measurements from 63 Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRBs) in order to search for Lorentz violating signals. We derive the first set limits on each of the 10 individual birefringent coefficients of the minimal SME with d = 4, with 95% confidence limits on the order of 10−34 on the dimensionless coefficients.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2469-2480 ◽  
Author(s):  
NEIL RUSSELL

An overview of space tests searching for small deviations from special relativity arising at the Planck scale is given. Potential high-sensitivity space-based experiments include ones with atomic clocks, masers, and electromagnetic cavities. We show that a significant portion of the coefficient space in the Standard Model extension, a framework that covers the full spectrum of possible effects, can be accessed using space tests. Some remarks on Lorentz violation in the gravitational sector are also given.


Sign in / Sign up

Export Citation Format

Share Document