scholarly journals Cascade calculation with schematic interactions

2019 ◽  
Vol 28 (08) ◽  
pp. 1950062 ◽  
Author(s):  
Levering Wolfe ◽  
Larry Zamick

In previous works we considered schematic Hamiltonians represented by simplified matrices. We defined two transition operators and calculated transition strengths from the ground state to all excited states. In many cases the strengths decreased nearly exponentially with the excitation energy. Now we do the reverse. We start with the highest energy state and calculate the cascade of transitions until the ground state is reached. On a log plot we show the average transition strength as a function of the number of energy intervals that were crossed. We give an analytic proof of exponential behavior for transition strength in the weak coupling limit for the [Formula: see text] transition operator.

2019 ◽  
Vol 28 (05) ◽  
pp. 1950037 ◽  
Author(s):  
Levering Wolfe ◽  
Larry Zamick

We show some interesting properties of tridiagonal and pentadiagonal matrices in the weak coupling limits. In the former case of this limit, the ground state wave function amplitudes are identical to the Taylor expansion coefficients of the exponential function e[Formula: see text]. With regards to transition rates, a dip in the pentadiagonal case which is not present in the tridiagonal case is explained. An intimate connection between energy denominators and exponential behavior is demonstrated.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


2003 ◽  
Vol 68 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Libor Mrázek ◽  
Ján Žabka ◽  
Zdeněk Dolejšek ◽  
Zdeněk Herman

The beam scattering method was used to investigate non-dissociative single-electron charge transfer between the molecular dication CO22+ and Ar or Ne at several collision energies between 3-10 eV (centre-of-mass, c.m.). Relative translational energy distributions of the product ions showed that in the reaction with Ar the CO2+ product was mainly formed in reactions of the ground state of the dication, CO22+(X3Σg-), leading to the excited states of the product CO2+(A2Πu) and CO2+(B2Σu+). In the reaction with Ne, the largest probability had the process from the reactant dication excited state CO22+(1Σg+) leading to the product ion ground state CO2+(X2Πg). Less probable were processes between the other excited states of the dication CO22+, (1∆g), (1Σu-), (3∆u), also leading to the product ion ground state CO2+(X2Πg). Using the Landau-Zener model of the reaction window, relative populations of the ground and excited states of the dication CO22+ in the reactant beam were roughly estimated as (X3Σg):(1∆g):(1Σg+):(1Σu-):(3∆u) = 1.0:0.6:0.5:0.25:0.25.


1985 ◽  
Vol 40 (9) ◽  
pp. 913-919
Author(s):  
Juan Carlos López ◽  
José L. Alonso

Abstract The rotational transitions of 3,4-dihydro-1,2-pyran in the ground state and six vibrationally excited states have been assigned. The rotational constants for the ground state (A = 5198.1847(24), B = 4747.8716(24) and C = 2710.9161(24) have been derived by fitting μa, μb and μc-type transitions. The dipole moment was determined from Stark displacement measurements to be 1.400(8) D with its principal axis components |μa| =1.240(2), |μb| = 0.588(10) and |μc| = 0.278(8) D. A model calculation to reproduce the ground state rotational constants indicates that the data are consistent with a twisted ring conformation. The average intensity ratio gives vibrational separations between the ground and excited states of the ring-bending and ring-twisting modes of ~ 178 and ~ 277 cm-1 respectively.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Conti ◽  
Davide Masoero

Abstract We study the large momentum limit of the monster potentials of Bazhanov-Lukyanov-Zamolodchikov, which — according to the ODE/IM correspondence — should correspond to excited states of the Quantum KdV model.We prove that the poles of these potentials asymptotically condensate about the complex equilibria of the ground state potential, and we express the leading correction to such asymptotics in terms of the roots of Wronskians of Hermite polynomials.This allows us to associate to each partition of N a unique monster potential with N roots, of which we compute the spectrum. As a consequence, we prove — up to a few mathematical technicalities — that, fixed an integer N , the number of monster potentials with N roots coincides with the number of integer partitions of N , which is the dimension of the level N subspace of the quantum KdV model. In striking accordance with the ODE/IM correspondence.


1977 ◽  
Vol 32 (12) ◽  
pp. 1541-1543
Author(s):  
H. Sterk ◽  
J. J. Suschnigg

Abstract Attempts to the Calculation of the Chemical Shift with Especial Consideration of the Paramagnetic Term The calculation of the paramagnetic term according to the Pople formalism of the chemical shift is expanded. The hitherto constant value of the energy gap between the ground state and the excited states is replaced by the value of the lowest lying excitation. This leads to a remarkably better differentiation of the paramagnetic terms of different compounds. The influence is shown on ethane, ethene and ethine.


1993 ◽  
Vol 08 (04) ◽  
pp. 705-721
Author(s):  
M. RAVENDRANADHAN ◽  
M. SABIR

Ground state charge of some fermion soliton system without C-invariance is calculated in 1+1 and 3+1 dimensions by a combination of adiabatic method and spectral flow analysis. Induced charge is calculated by evolving adiabatically the fields from a vacuum having a background field which has a zero energy state and spectral symmetry. The spectral flow is calculated by an analysis of the bound state spectrum. In 1+1 dimension our calculations are in agreement with the results already found in the literature. In 3+1 dimension we study the interaction of fermions with monopoles and dyons. In the case of monopoles, even though there is spectral asymmetry, ground state charge is found to be ±1/2. It is shown that ground state charge gets contribution only from the lowest angular momentum states and is discontinuous at the fermion mass.


1962 ◽  
Vol 40 (10) ◽  
pp. 1480-1489 ◽  
Author(s):  
J. W. Bichard ◽  
J. C. Giles

The optical absorption spectra of arsenic and phosphorus donor impurities in silicon have been studied under conditions of improved resolution. Absorption lines due to transitions from the impurity ground state to the excited states 2p0, 2p±, 3p0, 3p±, 4p0, 4 p±, and 5p0, and 5p± have been observed at 4.2° K. The relative intensities of some of these absorption lines are compared with existing experimental and theoretical estimates. The contribution of instrumental broadening to the observed line widths is assessed and natural line widths are estimated. The estimates indicate values for the natural line widths which are much less than those previously reported. For phosphorus impurity, the natural line widths are estimated to be less than 0.08 × 10−3 electron volts full width at half-maximum. The possibility of concentration broadening is discussed in connection with the arsenic data.


2002 ◽  
Vol 117 (21) ◽  
pp. 9703-9709 ◽  
Author(s):  
Seung-Joon Kim ◽  
Young-Joo Kim ◽  
Chang-Ho Shin ◽  
Byung-Jin Mhin ◽  
T. Daniel Crawford

Sign in / Sign up

Export Citation Format

Share Document