FIRST-ORDER NETWORK COHERENCE AND EIGENTIME IDENTITY ON THE WEIGHTED CAYLEY NETWORKS
In this paper, we first study the first-order network coherence, characterized by the entire mean first-passage time (EMFPT) for weight-dependent walk, on the weighted Cayley networks with the weight factor. The analytical formula of the EMFPT is obtained by the definition of the EMFPT. The obtained results show that the scalings of first-order coherence with network size obey four laws along with the range of the weight factor. Then, we study eigentime identity quantifying as the sum of reciprocals of all nonzero normalized Laplacian eigenvalues on the weighted Cayley networks with the weight factor. We show that all their eigenvalues can be obtained by calculating the roots of several small-degree polynomials defined recursively. The obtained results show that the scalings of the eigentime identity on the weighted Cayley networks obey two laws along with the range of the weight factor.