METALLURGICAL AND CORROSION CHARACTERIZATION OF POST WELD HEAT TREATED DUPLEX STAINLESS STEEL (UNS S31803) JOINTS BY FRICTION WELDING PROCESS

2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.

2017 ◽  
Vol 2 (88) ◽  
pp. 49-58
Author(s):  
E.G. Betini ◽  
C.S. Mucsi ◽  
T.S. Luz ◽  
M.T.D. Orlando ◽  
M-N. Avettand-Fènoël ◽  
...  

Purpose: The thermal diffusivity variation of UNS S32304 duplex stainless steel welds was studied after pulsed GTA welding autogenous process without filler addition. This property was measured in the transverse section of thin plates after welding process and post-heat treated at 750°C for 8 h followed by air-cooling. Design/methodology/approach: The present work reports measurements of thermal diffusivity using the laser-flash method. The thermal cycles of welding were acquired during welding by means of k-type thermocouples in regions near the weld joint. The used shielding gas was pure argon and 98% argon plus 2% of nitrogen. The temperature profiles were obtained using a digital data acquisition system. Findings: It was found an increase of thermal diffusivity after welding process and a decrease of these values after the heat treatment regarding the solidified weld pool zone, irrespective of the welding protection atmosphere. The microstructure was characterized and an increase of austenite phase in the solidified and heat-affected zones was observed for post-weld heat-treated samples. Research limitations/implications: It suggests more investigation and new measurements about the influence of the shielding gas variation on thermal diffusivity in the heat-affected zone. Practical implications: The nuclear industry, especially, requests alloys with high thermal stability in pipes for power generation systems and safe transportation equipment’s for radioactive material. Thus, the duplex stainless steel grades have improved this stability over standard grades and potentially increase the upper service temperature reliability of the equipment. Originality/value: After heat treatment, the welded plate with 98%Ar plus 2%N2 as shielding gas presented a thermal diffusivity closer to the as received sample. By means of 2%-nitrogen addition in shielding gas during GTAW welding of duplex stainless steel may facilitate austenite phase reformation, and then promotes stability on the thermal diffusivity of duplex stainless steels alloys.


2016 ◽  
Vol 21 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Ali Tahaei ◽  
Argelia Fabiola Miranda Perez ◽  
Mattia Merlin ◽  
Felipe Arturo Reyes Valdes ◽  
Gian Luca Garagnani

Abstract In this research, the effect of the addition of nickel powder and the application of a post weld heat treatment (PWHT) on the welding properties of the UNS S32304 lean duplex stainless steel were investigated in order to improve the microstructure and mechanical properties. Nickel powder was directly poured inside the joint gap and mixed with the filler metal during the Gas Tungsten Arc Welding (GTAW) process; moreover, the solution heat treatment was performed at 1100 °C for 10 min. The joints were characterized by optical microscopy (OM) and the evolution of the phase percentages in the different zones was studied by means of the image analysis technique. Tensile and hardness tests were carried out on the joints in order to evaluate the improvement of the mechanical properties. The results showed that both the addition of nickel powder during the welding process and the post weld heat treatment made it possible to improve the mechanical properties of the weld joints. PWHT had the best effect in restoring the equal percentage of ferrite and austenite compared to the addition of nickel powder.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a friction welding process was adopted to join dissimilar alloys of Ti-Al-4V to Nitinol. The effect of friction welding on the evolution of welded macro and microstructures and their hardnesses and tensile properties were studied and discussed in detail. The macrostructure of Ti-6Al-4V and Nitinol dissimilar joints revealed flash formation on the Ti-6Al-4V side due to a reduction in flow stress at high temperatures during friction welding. The optical microstructures revealed fine grains near the Ti-6Al-4V interface due to dynamic recrystallization and strain hardening effects. In contrast, the area nearer to the nitinol interface did not show any grain refinement. This study reveals that the formation of an intermetallic compound (Ti2Ni) at the weld interface resulted in poor ultimate tensile strength (UTS) and elongation values. All tensile specimens failed at the weld interface due to the formation of intermetallic compounds.


2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


Sign in / Sign up

Export Citation Format

Share Document