SPATIAL SOLITARY WAVES IN GENERALIZED NON-LOCAL NONLINEAR MEDIA

2010 ◽  
Vol 19 (02) ◽  
pp. 311-317 ◽  
Author(s):  
WEI-PING ZHONG ◽  
ZHENG-PING YANG

We introduce a very general self-trapped beam solution to the generalized non-local nonlinear Schrödinger equation in cylindrical coordinates, by combining superpositions of the known single accessible soliton solutions. Specific values of soliton parameters are selected as initial conditions and superpositions of the single soliton solutions in the highly non-local regime are launched into the non-local nonlinear medium with Gaussian response function, to obtain novel numerical solitary wave solutions. Novel solitary waves have been constructed that exhibit unique features whose intensity pattern is formed by various figures.

Author(s):  
João-Paulo Dias ◽  
Mário Figueira ◽  
Filipe Oliveira

We prove the existence of solitary wave solutions to the quasilinear Benney systemwhere , –1 < p < +∞ and a, γ > 0. We establish, in particular, the existence of travelling waves with speed arbitrarily large if p < 0 and arbitrarily close to 0 if . We also show the existence of standing waves in the case , with compact support if – 1 < p < 0. Finally, we obtain, under certain conditions, the linearized stability of such solutions.


Author(s):  
Keiichi Kato ◽  
Patrick-Nicolas Pipolo

In this paper we prove the existence and analyticity of solitary waves of generalized Kadomtsev–Petviashvili equations satisfying a set of conditions on linear and nonlinear terms which determine their behaviour at infinity and around 0.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 658-664 ◽  
Author(s):  
Xian-Jing Lai ◽  
Xiao-Ou Cai

In this paper, the decomposition method is implemented for solving the bidirectional Sawada- Kotera (bSK) equation with two kinds of initial conditions. As a result, the Adomian polynomials have been calculated and the approximate and exact solutions of the bSK equation are obtained by means of Maple, such as solitary wave solutions, doubly-periodic solutions, two-soliton solutions. Moreover, we compare the approximate solution with the exact solution in a table and analyze the absolute error and the relative error. The results reported in this article provide further evidence of the usefulness of the Adomian decomposition method for obtaining solutions of nonlinear problems


2018 ◽  
Vol 33 (25) ◽  
pp. 1850145 ◽  
Author(s):  
Abdullah ◽  
Aly R. Seadawy ◽  
Jun Wang

Propagation of three-dimensional nonlinear solitary waves in a magnetized electron–positron plasma is analyzed. Modified extended mapping method is further modified and applied to three-dimensional nonlinear modified Zakharov–Kuznetsov equation to find traveling solitary wave solutions. As a result, electrostatic field potential, electric field, magnetic field and quantum statistical pressure are obtained with the aid of Mathematica. The new exact solitary wave solutions are obtained in different forms such as periodic, kink and anti-kink, dark soliton, bright soliton, bright and dark solitary waves, etc. The results are expressed in the forms of trigonometric, hyperbolic, rational and exponential functions. The electrostatic field potential and electric and magnetic fields are shown graphically. The soliton stability of these solitary wave solutions is analyzed. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical physical problems.


2018 ◽  
Vol 23 (6) ◽  
pp. 942-950 ◽  
Author(s):  
Anjan Biswasa ◽  
Mehmet Ekici ◽  
Abdullah Sonmezoglu

This paper discusses shallow water waves that is modeled with Boussinesq equation that comes with dual dispersion and logarithmic nonlinearity. The extended trial function scheme retrieves exact Gaussian solitary wave solutions to the model.


2021 ◽  
Vol 21 (1) ◽  
pp. 91-104
Author(s):  
MAHA S.M. SHEHATA ◽  
HADI REZAZADEH ◽  
EMAD H.M. ZAHRAN ◽  
MOSTAFA ESLAMI ◽  
AHMET BEKIR

In this paper, new exact traveling wave solutions for the coupling Boiti-Leon-Pempinelli system are obtained by using two important different methods. The first is the modified extended tanh function methods which depend on the balance rule and the second is the Ricatti-Bernoulli Sub-ODE method which doesn’t depend on the balance rule. The solitary waves solutions can be derived from the exact wave solutions by give the parameters a special value. The consistent and inconsistent of the obtained solutions are studied not only between these two methods but also with that relisted by the other methods.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 239-246
Author(s):  
Mostafa Khater ◽  
Raghda Attia ◽  
Sayed Elagan ◽  
Meteub Alharthi

In this paper, the auxiliary equation method is employed to construct novel solitary wave solutions of the dimensionless form of the non-linear Schrodinger equation with parabolic law of non-linearity in the presence of non-linear dispersion. The solutions are represented through various techniques to demonstrate the dynamical and physical behavior of the investigated models. All solutions are checked their accuracy by putting them back into the original model?s equation by MATHEMATICA 12.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4959-4969 ◽  
Author(s):  
Wei-Qi Peng ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang

In this paper, we consider a generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera- Sawada (CDGKS) equation. By using the Bell polynomial, we derive its bilinear form. Based on the homoclinic breather limit method, we construct the homoclinic breather wave and the rational rogue wave solutions of the equation. Then by using its bilinear form, some solitary wave solutions of the CDGKS equation are provided by a very natural way. Moreover, some prominent characteristics for the dynamic behaviors of these solitons are analyzed by several graphics. Our results show that the breather wave can be transformed into rogue wave under the extreme behavior.


Author(s):  
Khalid K. Ali ◽  
Hadi Rezazadeh ◽  
Nauman Raza ◽  
Mustafa Inc

The main consideration of this paper is to discuss cubic optical solitons in a polarization-preserving fiber modeled by nonlinear Schrödinger equation (NLSE). We extract the solutions in the forms of hyperbolic, trigonometric including a class of solitary wave solutions like dark, bright–dark, singular, singular periodic, multiple-optical soliton and mixed complex soliton solutions. A recently developed integration tool known as new extended direct algebraic method (NEDAM) is applied to analyze the governing model. Moreover, the studied equation is discussed with two types of nonlinearity. The constraint conditions are explicitly presented for the resulting solutions. The accomplished results show that the applied computational system is direct, productive, reliable and can be carried out in more complicated phenomena.


Sign in / Sign up

Export Citation Format

Share Document