scholarly journals Tropical covers of curves and their moduli spaces

2014 ◽  
Vol 17 (01) ◽  
pp. 1350045 ◽  
Author(s):  
Arne Buchholz ◽  
Hannah Markwig

We define the tropical moduli space of covers of a tropical line in the plane as weighted abstract polyhedral complex, and the tropical branch map recording the images of the simple ramifications. Our main result is the invariance of the degree of the branch map, which enables us to give a tropical intersection-theoretic definition of tropical triple Hurwitz numbers. We show that our intersection-theoretic definition coincides with the one given in [B. Bertrand, E. Brugallé and G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011) 157–171] where a Correspondence Theorem for Hurwitz numbers is proved. Thus we provide a tropical intersection-theoretic justification for the multiplicities with which a tropical cover has to be counted. Our method of proof is to establish a local duality between our tropical moduli spaces and certain moduli spaces of relative stable maps to ℙ1.

2008 ◽  
Vol 51 (4) ◽  
pp. 519-534 ◽  
Author(s):  
Izzet Coskun ◽  
Joe Harris ◽  
Jason Starr

AbstractIn this paper we prove that the cone of effective divisors on the Kontsevich moduli spaces of stable maps, , stabilize when r ≥ d. We give a complete characterization of the effective divisors on . They are non-negative linear combinations of boundary divisors and the divisor of maps with degenerate image.


2000 ◽  
Vol 11 (08) ◽  
pp. 1027-1055 ◽  
Author(s):  
TOMÁS L. GÓMEZ ◽  
IGNACIO SOLS

Roughly speaking, a conic bundle is a surface, fibered over a curve, such that the fibers are conics (not necessarily smooth). We define stability for conic bundles and construct a moduli space. We prove that (after fixing some invariants) these moduli spaces are irreducible (under some conditions). Conic bundles can be thought of as generalizations of orthogonal bundles on curves. We show that in this particular case our definition of stability agrees with the definition of stability for orthogonal bundles. Finally, in an appendix by I. Mundet i Riera, a Hitchin-Kobayashi correspondence is stated for conic bundles.


2010 ◽  
Vol 21 (05) ◽  
pp. 639-664 ◽  
Author(s):  
YOUNG-HOON KIEM ◽  
HAN-BOM MOON

We compare the Kontsevich moduli space [Formula: see text] of stable maps to projective space with the quasi-map space ℙ( Sym d(ℂ2) ⊗ ℂn)//SL(2). Consider the birational map [Formula: see text] which assigns to an n tuple of degree d homogeneous polynomials f1, …, fn in two variables, the map f = (f1 : ⋯ : fn) : ℙ1 → ℙn-1. In this paper, for d = 3, we prove that [Formula: see text] is the composition of three blow-ups followed by two blow-downs. Furthermore, we identify the blow-up/down centers explicitly in terms of the moduli spaces [Formula: see text] with d = 1, 2. In particular, [Formula: see text] is the SL(2)-quotient of a smooth rational projective variety. The degree two case [Formula: see text], which is the blow-up of ℙ( Sym 2ℂ2 ⊗ ℂn)//SL(2) along ℙn-1, is worked out as a preliminary example.


2014 ◽  
Vol 150 (9) ◽  
pp. 1457-1481 ◽  
Author(s):  
Cristina Manolache

AbstractWe analyze the relationship between two compactifications of the moduli space of maps from curves to a Grassmannian: the Kontsevich moduli space of stable maps and the Marian–Oprea–Pandharipande moduli space of stable quotients. We construct a moduli space which dominates both the moduli space of stable maps to a Grassmannian and the moduli space of stable quotients, and equip our moduli space with a virtual fundamental class. We relate the virtual fundamental classes of all three moduli spaces using the virtual push-forward formula. This gives a new proof of a theorem of Marian–Oprea–Pandharipande: that enumerative invariants defined as intersection numbers in the stable quotient moduli space coincide with Gromov–Witten invariants.


2010 ◽  
Vol 146 (3) ◽  
pp. 731-771 ◽  
Author(s):  
Francis Brown ◽  
Sarah Carr ◽  
Leila Schneps

AbstractIn this paper, we introduce cell-forms on 𝔐0,n, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space 𝔐0,n(ℝ). We show that the cell-forms generate the top-dimensional cohomology group of 𝔐0,n, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell X. The elements of this basis are called insertion forms; their integrals over X are real numbers, called cell-zeta values, which generate a ℚ-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations.


2008 ◽  
Vol 60 (2) ◽  
pp. 297-312
Author(s):  
G. Bini ◽  
I. P. Goulden ◽  
D. M. Jackson

AbstractThe classical Hurwitz enumeration problem has a presentation in terms of transitive factorizations in the symmetric group. This presentation suggests a generalization from type A to other finite reflection groups and, in particular, to type B. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for the type B case that is studied here.


2019 ◽  
Vol 30 (2) ◽  
pp. 109-122
Author(s):  
Aleksandar Bulajić ◽  
Miomir Despotović ◽  
Thomas Lachmann

Abstract. The article discusses the emergence of a functional literacy construct and the rediscovery of illiteracy in industrialized countries during the second half of the 20th century. It offers a short explanation of how the construct evolved over time. In addition, it explores how functional (il)literacy is conceived differently by research discourses of cognitive and neural studies, on the one hand, and by prescriptive and normative international policy documents and adult education, on the other hand. Furthermore, it analyses how literacy skills surveys such as the Level One Study (leo.) or the PIAAC may help to bridge the gap between cognitive and more practical and educational approaches to literacy, the goal being to place the functional illiteracy (FI) construct within its existing scale levels. It also sheds more light on the way in which FI can be perceived in terms of different cognitive processes and underlying components of reading. By building on the previous work of other authors and previous definitions, the article brings together different views of FI and offers a perspective for a needed operational definition of the concept, which would be an appropriate reference point for future educational, political, and scientific utilization.


Author(s):  
Ross McKibbin

This book is an examination of Britain as a democratic society; what it means to describe it as such; and how we can attempt such an examination. The book does this via a number of ‘case-studies’ which approach the subject in different ways: J.M. Keynes and his analysis of British social structures; the political career of Harold Nicolson and his understanding of democratic politics; the novels of A.J. Cronin, especially The Citadel, and what they tell us about the definition of democracy in the interwar years. The book also investigates the evolution of the British party political system until the present day and attempts to suggest why it has become so apparently unstable. There are also two chapters on sport as representative of the British social system as a whole as well as the ways in which the British influenced the sporting systems of other countries. The book has a marked comparative theme, including one chapter which compares British and Australian political cultures and which shows British democracy in a somewhat different light from the one usually shone on it. The concluding chapter brings together the overall argument.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Sign in / Sign up

Export Citation Format

Share Document