Tropical covers of curves and their moduli spaces
We define the tropical moduli space of covers of a tropical line in the plane as weighted abstract polyhedral complex, and the tropical branch map recording the images of the simple ramifications. Our main result is the invariance of the degree of the branch map, which enables us to give a tropical intersection-theoretic definition of tropical triple Hurwitz numbers. We show that our intersection-theoretic definition coincides with the one given in [B. Bertrand, E. Brugallé and G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011) 157–171] where a Correspondence Theorem for Hurwitz numbers is proved. Thus we provide a tropical intersection-theoretic justification for the multiplicities with which a tropical cover has to be counted. Our method of proof is to establish a local duality between our tropical moduli spaces and certain moduli spaces of relative stable maps to ℙ1.