scholarly journals The algebra of cell-zeta values

2010 ◽  
Vol 146 (3) ◽  
pp. 731-771 ◽  
Author(s):  
Francis Brown ◽  
Sarah Carr ◽  
Leila Schneps

AbstractIn this paper, we introduce cell-forms on 𝔐0,n, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space 𝔐0,n(ℝ). We show that the cell-forms generate the top-dimensional cohomology group of 𝔐0,n, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell X. The elements of this basis are called insertion forms; their integrals over X are real numbers, called cell-zeta values, which generate a ℚ-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations.

2000 ◽  
Vol 11 (08) ◽  
pp. 1027-1055 ◽  
Author(s):  
TOMÁS L. GÓMEZ ◽  
IGNACIO SOLS

Roughly speaking, a conic bundle is a surface, fibered over a curve, such that the fibers are conics (not necessarily smooth). We define stability for conic bundles and construct a moduli space. We prove that (after fixing some invariants) these moduli spaces are irreducible (under some conditions). Conic bundles can be thought of as generalizations of orthogonal bundles on curves. We show that in this particular case our definition of stability agrees with the definition of stability for orthogonal bundles. Finally, in an appendix by I. Mundet i Riera, a Hitchin-Kobayashi correspondence is stated for conic bundles.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750049
Author(s):  
Indranil Biswas ◽  
Olivier Serman

Let [Formula: see text] be a geometrically irreducible smooth projective curve, of genus at least three, defined over the field of real numbers. Let [Formula: see text] be a connected reductive affine algebraic group, defined over [Formula: see text], such that [Formula: see text] is nonabelian and has one simple factor. We prove that the isomorphism class of the moduli space of principal [Formula: see text]-bundles on [Formula: see text] determine uniquely the isomorphism class of [Formula: see text].


Author(s):  
Carolina Araujo ◽  
Thiago Fassarella ◽  
Inder Kaur ◽  
Alex Massarenti

AbstractFix $n\geq 5$ general points $p_1, \dots , p_n\in{\mathbb{P}}^1$ and a weight vector ${\mathcal{A}} = (a_{1}, \dots , a_{n})$ of real numbers $0 \leq a_{i} \leq 1$. Consider the moduli space $\mathcal{M}_{{\mathcal{A}}}$ parametrizing rank two parabolic vector bundles with trivial determinant on $\big ({\mathbb{P}}^1, p_1,\dots , p_n\big )$ that are semistable with respect to ${\mathcal{A}}$. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space $\mathcal{M}_{{\mathcal{A}}}$. It is isomorphic to $\left (\frac{\mathbb{Z}}{2\mathbb{Z}}\right )^{k}$ for some $k\in \{0,\dots , n-1\}$ and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with $k=n-1$, occurs for the central weight ${\mathcal{A}}_{F}= \left (\frac{1}{2},\dots ,\frac{1}{2}\right )$. The corresponding moduli space ${\mathcal M}_{{\mathcal{A}}_F}$ is a Fano variety of dimension $n-3$, which is smooth if $n$ is odd, and has isolated singularities if $n$ is even.


Author(s):  
Francis Brown ◽  
Clément Dupont

AbstractIn this paper, we study a single-valued integration pairing between differential forms and dual differential forms which subsumes some classical constructions in mathematics and physics. It can be interpreted as a p-adic period pairing at the infinite prime. The single-valued integration pairing is defined by transporting the action of complex conjugation from singular to de Rham cohomology via the comparison isomorphism. We show how quite general families of period integrals admit canonical single-valued versions and prove some general formulae for them. This implies an elementary “double copy” formula expressing certain singular volume integrals over the complex points of a smooth projective variety as a quadratic expression in ordinary period integrals of half the dimension. We provide several examples, including non-holomorphic modular forms, archimedean Néron–Tate heights on curves, single-valued multiple zeta values and polylogarithms. The results of the present paper are used in [F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, preprint 2019, https://arxiv.org/abs/1910.01107] to prove a recent conjecture of Stieberger which relates the coefficients in a Laurent expansion of two different kinds of periods of twisted cohomology on the moduli spaces of curves {\mathcal{M}_{0,n}} of genus zero with n marked points. We also study a morphism between certain rings of “motivic” periods, called the de Rham projection, which provides a bridge between complex periods and single-valued periods in many situations of interest.


2014 ◽  
Vol 12 (8) ◽  
Author(s):  
Indranil Biswas ◽  
Amit Hogadi ◽  
Yogish Holla

AbstractLet X be an irreducible smooth complex projective curve of genus g, with g ≥ 2. Let N be a connected component of the moduli space of semistable principal PGLr (ℂ)-bundles over X; it is a normal unirational complex projective variety. We prove that the Brauer group of a desingularization of N is trivial.


2004 ◽  
Vol 15 (03) ◽  
pp. 211-257 ◽  
Author(s):  
RYUSHI GOTO

This paper focuses on a geometric structure defined by a system of closed exterior differential forms and develops a new approach to deformation problems of geometric structures. We obtain a criterion for unobstructed deformations from a cohomological point of view (Theorem 1.7). Further we show that under a cohomological condition, the moduli space of the geometric structures becomes a smooth manifold of finite dimension (Theorem 1.8). We apply our approach to the geometric structures such as Calabi–Yau, HyperKähler, G2 and Spin(7) structures and then obtain a unified construction of smooth moduli spaces of these four geometric structures. We generalize the Moser's stability theorem to provide a direct proof of the local Torelli type theorem in these four geometric structures (Theorem 1.10).


2014 ◽  
Vol 17 (01) ◽  
pp. 1350045 ◽  
Author(s):  
Arne Buchholz ◽  
Hannah Markwig

We define the tropical moduli space of covers of a tropical line in the plane as weighted abstract polyhedral complex, and the tropical branch map recording the images of the simple ramifications. Our main result is the invariance of the degree of the branch map, which enables us to give a tropical intersection-theoretic definition of tropical triple Hurwitz numbers. We show that our intersection-theoretic definition coincides with the one given in [B. Bertrand, E. Brugallé and G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011) 157–171] where a Correspondence Theorem for Hurwitz numbers is proved. Thus we provide a tropical intersection-theoretic justification for the multiplicities with which a tropical cover has to be counted. Our method of proof is to establish a local duality between our tropical moduli spaces and certain moduli spaces of relative stable maps to ℙ1.


2009 ◽  
Vol 11 (01) ◽  
pp. 1-26
Author(s):  
INDRANIL BISWAS ◽  
VICENTE MUÑOZ

Let X be any compact connected Riemann surface of genus g, with g ≥ 3. For any r ≥ 2, let [Formula: see text] denote the moduli space of holomorphic SL (r,ℂ)-connections over X. It is known that the biholomorphism class of the complex variety [Formula: see text] is independent of the complex structure of X. If g = 3, then we assume that r ≥ 3. We prove that the isomorphism class of the variety [Formula: see text] determines the Riemann surface X uniquely up to an isomorphism. A similar result is proved for the moduli space of holomorphic GL (r,ℂ)-connections on X. We also show that the Torelli theorem remains valid for the moduli spaces of connections, as well as those of stable vector bundles, on geometrically irreducible smooth projective curves defined over the field of real numbers.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


Sign in / Sign up

Export Citation Format

Share Document