Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space

2019 ◽  
Vol 21 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Xuemei Zhang ◽  
Meiqiang Feng

In this paper, bifurcation diagrams and exact multiplicity of positive solution are obtained for the one-dimensional prescribed mean curvature equation in Minkowski space in the form of [Formula: see text] where [Formula: see text] is a bifurcation parameter, [Formula: see text], the radius of the one-dimensional ball [Formula: see text], is an evolution parameter. Moreover, we make a comparison between the bifurcation diagram of one-dimensional prescribed mean curvature equation in Euclid space and Minkowski space. Our methods are based on a detailed analysis of time maps.

2017 ◽  
Vol 24 (1) ◽  
pp. 113-134 ◽  
Author(s):  
Chiara Corsato ◽  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractWe discuss existence, multiplicity, localisation and stability properties of solutions of the Dirichlet problem associated with the gradient dependent prescribed mean curvature equation in the Lorentz–Minkowski space$\left\{\begin{aligned} \displaystyle{-}\operatorname{div}\biggl{(}\frac{\nabla u% }{\sqrt{1-|\nabla u|^{2}}}\biggr{)}&\displaystyle=f(x,u,\nabla u)&&% \displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega.\end{aligned}\right.$The obtained results display various peculiarities, which are due to the special features of the involved differential operator and have no counterpart for elliptic problems driven by other quasilinear differential operators. This research is also motivated by some recent achievements in the study of prescribed mean curvature graphs in certain Friedmann–Lemaître–Robertson–Walker, as well as Schwarzschild–Reissner–Nordström, spacetimes.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Ruyun Ma ◽  
Lingfang Jiang

We consider the existence of positive solutions of one-dimensional prescribed mean curvature equation−(u′/1+u′2)′=λf(u),0<t<1,u(t)>0,t∈(0,1),u(0)=u(1)=0whereλ>0is a parameter, andf:[0,∞)→[0,∞)is continuous. Further, whenfsatisfiesmax{up,uq}≤f(u)≤up+uq,0<p≤q<+∞, we obtain the exact number of positive solutions. The main results are based upon quadrature method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shiping Lu ◽  
Ming Lu

We study the existence of periodic solutions for the one-dimensional prescribed mean curvature delay equation(d/dt)(x'(t)/1+x't2) +∑i=1naitgxt-τit=pt. By using Mawhin's continuation theorem, a new result is obtained. Furthermore, the nonexistence of periodic solution for the equation is investigated as well.


Sign in / Sign up

Export Citation Format

Share Document