differential operator
Recently Published Documents


TOTAL DOCUMENTS

1934
(FIVE YEARS 445)

H-INDEX

35
(FIVE YEARS 8)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Amal Mohammed Darweesh ◽  
Waggas Galib Atshan ◽  
Ali Hussein Battor ◽  
Alina Alb Lupaş

In this research, we study suitable classes of admissible functions and establish the properties of third-order differential subordination by making use a certain differential operator of analytic functions in U and have the normalized Taylor–Maclaurin series of the form: f(z)=z+∑n=2∞anzn, (z∈U). Some new results on differential subordination with some corollaries are obtained. These properties and results are symmetry to the properties of the differential superordination to form the sandwich theorems.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Matthew Olanrewaju Oluwayemi ◽  
Kaliappan Vijaya ◽  
Adriana Cătaş

In this article, we construct a new subclass of analytic functions involving a generalized differential operator and investigate certain properties including the radius of starlikeness, closure properties and integral means result for the class of analytic functions with negative coefficients. Further, the relationship between the results and some known results in literature are also established.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Adriana Cătaş ◽  
Emilia Borşa ◽  
Loredana Iambor

In this paper, we aim to present a survey on subordination and superordination theorems related to the class of analytic functions defined in a symmetric domain, which is the open unit disc. The results were deduced by making use of a new differential operator. We present two properties of this operator from which we constructed the final results. Moreover, based on the obtained outcomes, we give two sandwich-type theorems. Some interesting further consequences are also taken into consideration.


2022 ◽  
Vol 30 (1) ◽  
pp. 335-361
Author(s):  
Melih Cinar ◽  
◽  
Ismail Onder ◽  
Aydin Secer ◽  
Mustafa Bayram ◽  
...  

<abstract><p>This paper considers deriving new exact solutions of a nonlinear complex generalized Zakharov dynamical system for two different definitions of derivative operators called conformable and $ M- $ truncated. The system models the spread of the Langmuir waves in ionized plasma. The extended rational $ sine-cosine $ and $ sinh-cosh $ methods are used to solve the considered system. The paper also includes a comparison between the solutions of the models containing separately conformable and $ M- $ truncated derivatives. The solutions are compared in the $ 2D $ and $ 3D $ graphics. All computations and representations of the solutions are fulfilled with the help of Mathematica 12. The methods are efficient and easily computable, so they can be applied to get exact solutions of non-linear PDEs (or PDE systems) with the different types of derivatives.</p></abstract>


2021 ◽  
pp. 4819-4829
Author(s):  
A. Ta. Yousef ◽  
Z. Salleh

This paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.


Author(s):  
Menglan Liao ◽  
Zhong Tan

The purpose of this paper is to study the following equation driven by a nonlocal integro-differential operator $\mathcal{L}_K$: \[u_{tt}+[u]_s^{2(\theta-1)}\mathcal{L}_Ku+a|u_t|^{m-1}u_t=b|u|^{p-1}u\] with homogeneous Dirichlet boundary condition and initial data, where $[u]^2_s$ is the Gagliardo seminorm, $a\geq 0,~b>0,~0


2021 ◽  
Vol 315 (1) ◽  
pp. 45-73
Author(s):  
William Duke

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 342
Author(s):  
Rabha W. Ibrahim ◽  
Dumitru Baleanu

In this paper, we aim to generalize a fractional integro-differential operator in the open unit disk utilizing Jackson calculus (quantum calculus or q-calculus). Next, by consuming the generalized operator to define a formula of normalized analytic functions, we present a set of integral inequalities using the concepts of subordination and superordination. In addition, as an application, we determine the maximum and minimum solutions of the extended fractional 2D-shallow water equation in a complex domain.


Sign in / Sign up

Export Citation Format

Share Document