Strongly Nonlinear Vibrations of a Hyperelastic Thin-walled Cylindrical Shell Based on the Modified Lindstedt–Poincaré Method

2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 723
Author(s):  
Vicente Martínez

In this paper, we use an SIRD model to analyze the evolution of the COVID-19 pandemic in Spain, caused by a new virus called SARS-CoV-2 from the coronavirus family. This model is governed by a nonlinear system of differential equations that allows us to detect trends in the pandemic and make reliable predictions of the evolution of the infection in the short term. This work shows this evolution of the infection in various changing stages throughout the period of maximum alert in Spain. It also shows a quick adaptation of the parameters that define the disease in several stages. In addition, the model confirms the effectiveness of quarantine to avoid the exponential expansion of the pandemic and reduce the number of deaths. The analysis shows good short-term predictions using the SIRD model, which are useful to influence the evolution of the epidemic and thus carry out actions that help reduce its harmful effects.


Author(s):  
Tao Liu ◽  
Wei Zhang ◽  
Yan Zheng ◽  
Yufei Zhang

Abstract This paper is focused on the internal resonances and nonlinear vibrations of an eccentric rotating composite laminated circular cylindrical shell subjected to the lateral excitation and the parametric excitation. Based on Love thin shear deformation theory, the nonlinear partial differential equations of motion for the eccentric rotating composite laminated circular cylindrical shell are established by Hamilton’s principle, which are derived into a set of coupled nonlinear ordinary differential equations by the Galerkin discretization. The excitation conditions of the internal resonance is found through the Campbell diagram, and the effects of eccentricity ratio and geometric papameters on the internal resonance of the eccentric rotating system are studied. Then, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equations in the case of 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. Finally, we study the nonlinear vibrations of the eccentric rotating composite laminated circular cylindrical shell systems.


2002 ◽  
Vol 12 (03) ◽  
pp. 511-523 ◽  
Author(s):  
BENJAMIN A. MARLIN

This paper considers an autonomous nonlinear system of differential equations derived in [Leipnik, 1979]. A criterion for the existence of closed orbits in similar systems is presented. Numerical results are made rigorous by the use of interval analytic techniques in establishing the existence of a periodic solution which is not asymptotically stable. The limitations of the method of locating orbits are considered when a promising candidate for a closed orbit is shown not to intersect itself.


For a nonlinear system of differential equations $\dot x=f(x)$, a method of constructing a system of full rank $\dot x=f(x)+g(x)u$ is studied for vector fields of the class $C^k$, $1\le k<\infty$, in the case when $f(x)\not=0$. A method for constructing a non-autonomous system of full rank is proposed in the case when the vector field $f(x)$ can vanish.


Sign in / Sign up

Export Citation Format

Share Document