scholarly journals Existence of Positive Solutions of a Singular Initial Problem for a Nonlinear System of Differential Equations

2004 ◽  
Vol 34 (3) ◽  
pp. 923-944 ◽  
Author(s):  
Josef Diblík ◽  
Miroslava Rğzǐčková
2016 ◽  
Vol 118 (1) ◽  
pp. 83
Author(s):  
S. Ala ◽  
G. A. Afrouzi

We consider the system of differential equations \[ \begin{cases} -\Delta_{p(x)}u=\lambda^{p(x)}f(u,v)&\text{in $\Omega$,}\\ -\Delta_{q(x)}v=\mu^{q(x)}g(u,v)&\text{in $\Omega$,}\\ u=v=0&\text{on $\partial\Omega$,}\end{cases} \] where $\Omega \subset\mathsf{R}^{N}$ is a bounded domain with $C^{2}$ boundary $\partial \Omega,1<p(x),q(x)\in C^{1}(\bar{\Omega})$ are functions. $\Delta_{p(x)}u=\mathop{\rm div}\nolimits(|\nabla u|^{p(x)-2}\nabla u)$ is called $p(x)$-Laplacian. We discuss the existence of a positive solution via sub-super solutions.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Jiqiang Jiang ◽  
Lishan Liu ◽  
Yonghong Wu

We consider the existence of positive solutions for a class of nonlinear integral boundary value problems for fractional differential equations. By using some fixed point theorems, the existence and multiplicity results of positive solutions are obtained. The results obtained in this paper improve and generalize some well-known results.


Author(s):  
F. V. Atkinson

SynopsisThis paper is devoted to a study of differential equations and inequalities of the formandThe results are mainly concerned with the existence of positive solutions, their uniqueness in the case of (*), and bounds for these solutions.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 332 ◽  
Author(s):  
Hamza Medekhel ◽  
Salah Boulaaras ◽  
Khaled Zennir ◽  
Ali Allahem

This paper deals with the existence of positively solution and its asymptotic behavior for parabolic system of ( p ( x ) , q ( x ) ) -Laplacian system of partial differential equations using a sub and super solution according to some given boundary conditions, Our result is an extension of Boulaaras’s works which studied the stationary case, this idea is new for evolutionary case of this kind of problem.


Author(s):  
Johnny Henderson ◽  
Rodica Luca

AbstractWe investigate the existence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations, subject to multipoint boundary conditions. Existence results for systems of nonlinear Hammerstein integral equations are also presented. Some nontrivial examples are included.


Sign in / Sign up

Export Citation Format

Share Document