ESO-Based Vibration Control for All-Clamped Plate Using an Electrodynamic Inertial Actuator

Author(s):  
Luyao Zhang ◽  
Shengquan Li ◽  
Chaowei Zhu ◽  
Juan Li

This paper proposes a disturbance rejection method with extended state observer (ESO) and a tracking differentiator (TD) to realize vibration suppression of all-clamped plate structure in the presence of lumped disturbance, i.e. internal dynamic uncertainties, unknown external forces and accelerometer measurement noises. First, the structure is modeled as two degrees of freedom system based on vibration characteristics. Second, an ESO is employed to ensure the vibration suppression performance by estimating the lumped disturbances and compensating these disturbances via real-time feedforward mechanism. Meanwhile, a TD is introduced to eliminate the influence of the measurement noises. Moreover, the stability of the closed-loop system is discussed in detail. Finally, the proposed controller is verified on the hardware-in-loop plat-form based on NI PCIe-6343 data acquisition card. Theoretical analysis and experimental results show that the proposed method possesses good vibration suppression performance.

2011 ◽  
Vol 79 (1) ◽  
Author(s):  
M. Eissa ◽  
M. Kamel ◽  
A. T. El-Sayed

An investigation into the passive vibration reduction of the nonlinear spring pendulum system, simulating the ship roll motion is presented. This leads to a four-degree-of-freedom (4-DOF) system subjected to multiparametric excitation forces. The two absorbers in the longitudinal and transverse directions are usually designed to control the vibration near the simultaneous subharmonic and internal resonance where system damage is probable. The theoretical results are obtained by applying the multiple scale perturbation technique (MSPT). The stability of the obtained nonlinear solution is studied and solved numerically. The obtained results from the frequency response curves confirmed the numerical results which were obtained using time history. For validity, the numerical solution is compared with the analytical solution. Effectiveness of the absorbers (Ea) are about 13 000 for the first mode (x) and 10 000 for the second mode (ϕ). A threshold value of linear damping coefficient can be used directly for vibration suppression of both vibration modes. Comparison with the available published work is reported.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Author(s):  
Federico Cheli ◽  
Marco Bocciolone ◽  
Marco Pezzola ◽  
Elisabetta Leo

The study of motorcycle’s stability is an important task for the passenger’s safety. The range of frequencies involved for the handling stability is lower than 10 Hz. A numerical model was developed to access the stability of a motorcycle vehicle in this frequency range. The stability is analysed using a linearized model around the straight steady state condition. In this condition, the vehicle’s vertical and longitudinal motion are decoupled, hence the model has only four degrees of freedom (steering angle, yaw angle, roll angle and lateral translation), while longitudinal motion is imposed. The stability was studied increasing the longitudinal speed. The input of the model can be either a driver input manoeuvre (roll angle) or a transversal component of road input able to excite the vibration modes. The driver is introduced in the model as a steering torque that allows the vehicle to follow a reference trajectory. To validate the model, experimental tests were done. To excite the vehicle modes, the driver input was not taken into account considering both the danger for the driver and the repeatability of the manoeuvre. Two different vehicle configurations were tested: vehicle 1 is a motorcycle [7] and vehicle 2 is a scooter. Through the use of the validated model, a sensitivity analysis was done changing structural (for example normal trail, steering angle, mass) and non structural parameters (for example longitudinal speed).


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


1932 ◽  
Vol 6 (4) ◽  
pp. 417-427 ◽  
Author(s):  
C. C. Coffin

The gaseous decompositions of the esters butylidene diacetate and ethylidene dipropionate have been studied from points of view previously outlined in papers on the decomposition of ethylidene diacetate (2, 3). The decomposition velocities have been measured at initial pressures of from 5 to 56 cm. of mercury and at temperatures between 211 and 265 °C. The reactions are homogeneous and of the first order. They agree with the Arrhenius equation and give 100% yields (within experimental error) of an aldehyde and an anhydride. The preparation of the compounds and improvements in the technique of the velocity measurements are described.While the specific velocities of the three reactions at any temperature are somewhat different, their activation energies are the same. It is suggested that in the case of such simple reactions, which are strictly localized within the molecular structure, the activation energy can be identified as the maximum energy that the reactive bonds may possess and still exist; i.e., it may be taken as a measure of the stability of the bonds which are broken in the reaction. The suggestion is also made that for a series of reactions which have the same activation energy, the specific velocities can be taken as a relative measure of the number of internal degrees of freedom that contribute to the energy of activation. On the basis of these assumptions it becomes possible to use reaction-velocity measurements for the investigation of intramolecular energy exchange. The theoretical significance of the data is further discussed and the scope of future work in this connection is indicated.The monomolecular velocity constants (sec−1) of the decomposition of ethylidene diacetate, ethylidene dipropionate and butylidene diacetate are given respectively by the equations [Formula: see text], [Formula: see text], and [Formula: see text].


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Sign in / Sign up

Export Citation Format

Share Document