COLOR FACE SEGMENTATION USING A FUZZY MIN-MAX NEURAL NETWORK

2002 ◽  
Vol 02 (04) ◽  
pp. 587-601
Author(s):  
JUAN WACHS ◽  
HELMAN STERN ◽  
MARK LAST

This work presents an automated method of segmentation of faces in color images with complex backgrounds. Segmentation of the face from the background in an image is performed by using face color feature information. Skin regions are determined by sampling the skin colors of the face in a Hue Saturation Value (HSV) color model, and then training a fuzzy min-max neural network (FMMNN) to automatically segment these skin colors. This work appears to be the first application of Simpson's FMMNN algorithm to the problem of face segmentation. Results on several test cases showed recognition rates of both face and background pixels to be above 93%, except for the case of a small face embedded in a large background. Suggestions for dealing with this difficult case are proffered. The image pixel classifier is linear of order O(Nh) where N is the number of pixels in the image and h is the number of fuzzy hyperbox sets determined by training the FMMNN.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Guoqing Bao ◽  
Xiuying Wang ◽  
Ran Xu ◽  
Christina Loh ◽  
Oreoluwa Daniel Adeyinka ◽  
...  

We have developed a platform, termed PathoFusion, which is an integrated system for marking, training, and recognition of pathological features in whole-slide tissue sections. The platform uses a bifocal convolutional neural network (BCNN) which is designed to simultaneously capture both index and contextual feature information from shorter and longer image tiles, respectively. This is analogous to how a microscopist in pathology works, identifying a cancerous morphological feature in the tissue context using first a narrow and then a wider focus, hence bifocal. Adjacent tissue sections obtained from glioblastoma cases were processed for hematoxylin and eosin (H&E) and immunohistochemical (CD276) staining. Image tiles cropped from the digitized images based on markings made by a consultant neuropathologist were used to train the BCNN. PathoFusion demonstrated its ability to recognize malignant neuropathological features autonomously and map immunohistochemical data simultaneously. Our experiments show that PathoFusion achieved areas under the curve (AUCs) of 0.985 ± 0.011 and 0.988 ± 0.001 in patch-level recognition of six typical pathomorphological features and detection of associated immunoreactivity, respectively. On this basis, the system further correlated CD276 immunoreactivity to abnormal tumor vasculature. Corresponding feature distributions and overlaps were visualized by heatmaps, permitting high-resolution qualitative as well as quantitative morphological analyses for entire histological slides. Recognition of more user-defined pathomorphological features can be added to the system and included in future tissue analyses. Integration of PathoFusion with the day-to-day service workflow of a (neuro)pathology department is a goal. The software code for PathoFusion is made publicly available.


2021 ◽  
Vol 13 (15) ◽  
pp. 3000
Author(s):  
Georg Zitzlsberger ◽  
Michal Podhorányi ◽  
Václav Svatoň ◽  
Milan Lazecký ◽  
Jan Martinovič

Remote-sensing-driven urban change detection has been studied in many ways for decades for a wide field of applications, such as understanding socio-economic impacts, identifying new settlements, or analyzing trends of urban sprawl. Such kinds of analyses are usually carried out manually by selecting high-quality samples that binds them to small-scale scenarios, either temporarily limited or with low spatial or temporal resolution. We propose a fully automated method that uses a large amount of available remote sensing observations for a selected period without the need to manually select samples. This enables continuous urban monitoring in a fully automated process. Furthermore, we combine multispectral optical and synthetic aperture radar (SAR) data from two eras as two mission pairs with synthetic labeling to train a neural network for detecting urban changes and activities. As pairs, we consider European Remote Sensing (ERS-1/2) and Landsat 5 Thematic Mapper (TM) for 1991–2011 and Sentinel 1 and 2 for 2017–2021. For every era, we use three different urban sites—Limassol, Rotterdam, and Liège—with at least 500km2 each, and deep observation time series with hundreds and up to over a thousand of samples. These sites were selected to represent different challenges in training a common neural network due to atmospheric effects, different geographies, and observation coverage. We train one model for each of the two eras using synthetic but noisy labels, which are created automatically by combining state-of-the-art methods, without the availability of existing ground truth data. To combine the benefit of both remote sensing types, the network models are ensembles of optical- and SAR-specialized sub-networks. We study the sensitivity of urban and impervious changes and the contribution of optical and SAR data to the overall solution. Our implementation and trained models are available publicly to enable others to utilize fully automated continuous urban monitoring.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2014 ◽  
Vol 626 ◽  
pp. 32-37 ◽  
Author(s):  
Ajayan Lekshmi ◽  
C. Christopher Seldev

Shadows are viewed as undesired information that strongly affects images. Shadows may cause a high risk to present false color tones, to distort the shape of objects, to merge, or to lose objects. This paper proposes a novel approach for the detection and removal of shadows in an image. Firstly the shadow and non shadow region of the original image is identified by HSV color model. The shadow removal is based on exemplar based image inpainting. Finally, the border between the reconstructed shadow and the non shadow areas undergoes bilinear interpolation to yield a smooth transition between them. They would lead to a better fitting of the shadow and non shadow classes, thus resulting in a potentially better reconstruction quality.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 182
Author(s):  
Rodrigo Dalvit Carvalho da Silva ◽  
Thomas Richard Jenkyn ◽  
Victor Alexander Carranza

In reconstructive craniofacial surgery, the bilateral symmetry of the midplane of the facial skeleton plays an important role in surgical planning. Surgeons can take advantage of the intact side of the face as a template for the malformed side by accurately locating the midplane to assist in the preparation of the surgical procedure. However, despite its importance, the location of the midline is still a subjective procedure. The aim of this study was to present a 3D technique using a convolutional neural network and geometric moments to automatically calculate the craniofacial midline symmetry of the facial skeleton from CT scans. To perform this task, a total of 195 skull images were assessed to validate the proposed technique. In the symmetry planes, the technique was found to be reliable and provided good accuracy. However, further investigations to improve the results of asymmetric images may be carried out.


Author(s):  
Young Hyun Kim ◽  
Eun-Gyu Ha ◽  
Kug Jin Jeon ◽  
Chena Lee ◽  
Sang-Sun Han

Objectives: This study aimed to develop a fully automated human identification method based on a convolutional neural network (CNN) with a large-scale dental panoramic radiograph (DPR) dataset. Methods: In total, 2,760 DPRs from 746 subjects who had 2 to 17 DPRs with various changes in image characteristics due to various dental treatments (tooth extraction, oral surgery, prosthetics, orthodontics, or tooth development) were collected. The test dataset included the latest DPR of each subject (746 images) and the other DPRs (2,014 images) were used for model training. A modified VGG16 model with two fully connected layers was applied for human identification. The proposed model was evaluated with rank-1, –3, and −5 accuracies, running time, and gradient-weighted class activation mapping (Grad-CAM)–applied images. Results: This model had rank-1,–3, and −5 accuracies of 82.84%, 89.14%, and 92.23%, respectively. All rank-1 accuracy values of the proposed model were above 80% regardless of changes in image characteristics. The average running time to train the proposed model was 60.9 sec per epoch, and the prediction time for 746 test DPRs was short (3.2 sec/image). The Grad-CAM technique verified that the model automatically identified humans by focusing on identifiable dental information. Conclusion: The proposed model showed good performance in fully automatic human identification despite differing image characteristics of DPRs acquired from the same patients. Our model is expected to assist in the fast and accurate identification by experts by comparing large amounts of images and proposing identification candidates at high speed.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 128
Author(s):  
Zhenwei Guan ◽  
Feng Min ◽  
Wei He ◽  
Wenhua Fang ◽  
Tao Lu

Forest fire detection from videos or images is vital to forest firefighting. Most deep learning based approaches rely on converging image loss, which ignores the content from different fire scenes. In fact, complex content of images always has higher entropy. From this perspective, we propose a novel feature entropy guided neural network for forest fire detection, which is used to balance the content complexity of different training samples. Specifically, a larger weight is given to the feature of the sample with a high entropy source when calculating the classification loss. In addition, we also propose a color attention neural network, which mainly consists of several repeated multiple-blocks of color-attention modules (MCM). Each MCM module can extract the color feature information of fire adequately. The experimental results show that the performance of our proposed method outperforms the state-of-the-art methods.


2016 ◽  
Vol 150 (8) ◽  
pp. 38-42
Author(s):  
Himali Vaghela ◽  
Hardik Modi ◽  
Manoj Pandya ◽  
M. B.

Sign in / Sign up

Export Citation Format

Share Document